Агроэкосистемы и их компоненты. Пути повышения продуктивности агроэкосистем Агроэкосистемы их компоненты пути повышения продуктивности агроэкосистем

«В.И. ТИТОВА, М.В. ДАБАХОВ, Е.В. ДАБАХОВА АГРОЭКОСИСТЕМЫ: ПРОБЛЕМЫ ФУНКЦИОНИРОВАНИЯ И СОХРАНЕНИЯ УСТОЙЧИВОСТИ (теория и практика агронома-эколога) Учебное пособие НИЖЕГОРОДСКАЯ...»

-- [ Страница 5 ] --

в) по цинку, меди, никелю, хрому Td Zn = [(2200 – 15,5) 15] / (29,5 – 15,5) = 152 года Td Cu = [(1320 – 8,0) 15] / (13,5 – 8,0) = 3578 лет Td Ni = [(800 – 2,6) 15] / (16,2 – 12,6) = 3280 лет Td Cr = [(1800 – 8,1) 15] / (11,5 – 8,1) = 7905 лет Однако, если при расчете периода деградации в качестве критического уровня деградации можно принять предельно допустимое значение содержания тяжелого металла в почве, что возможно, то результат значительно изменится.

В таком случае период, за который почва превысит данное содержание по цинку, составит:



Td Zn = [(100 – 29,5) 15] / (29,5 – 15,5) = 86 лет Таким образом, через 86 лет почва при сохранении имеющихся тенденций достигнет ПДК по данному элементу.

Резюме: Произведенные расчеты свидетельствуют, что в данный момент времени почва является слабо деградированной по содержанию свинца и кадмия (химическая деградация). При сохранении имеющихся тенденций она перейдет в разряд сильно деградированной через 68,6 лет по свинцу и через 30,8 лет по кадмию.

В данном примере степень деградации обследуемой почвы определялась по отношению к фоновой (ненарушенной почве). Этот метод имеет следующие недостатки:

По ряду показателей сложно корректно подобрать фоновую почву;

Могут возникнуть затруднения при определении времени действия деградационных процессов.

Задача 2 Оценить степень и период деградации участка сельскохозяйственных угодий. Тип почвы – серая лесная легкосуглинистая. Показатели питательного режима почв представлены в таблице 5.6. Между двумя турами обследований прошло 10 лет.

Таблица 5.6 Показатели состояния почвы между двумя турами обследования

–  –  –

Сравнивая результаты двух туров обследования, следует отметить, что произошло ухудшение питательных свойств почв: снизилось содержание гумуса и биогенных элементов (химическая деградация).

1) Определим степень и период деградации по содержанию гумуса.

Кратность снижения содержания гумуса составила:

2,5/1,9 = 1,31 – т.е. 1-я степень деградации.

Td = [(x0 – xmin) T] / (x0 – x1) xmin = 2,5/2 = 1,25 x0 = 2,5 x1 = 1,9 T = 10 Td = [(2,5 – 1,25) 10] / (2,5 – 1,9) = 20,8 лет Таким образом, химическая деградация почвы по гумусу может быть обозначена как 120,8. При сохранении имеющейся тенденции уже через 10,8 лет почва перейдет в разряд очень сильно деградированной.

–  –  –

Резюме: Проведенные расчеты показали, что данная почва является слабо деградированной по всем рассмотренным показателям, однако оценка периодов деградации свидетельствует, что самая высокая скорость характерна для процесса снижения содержания гумуса. По данному показателю почва достигнет 4-й степени деградации через 10,8 лет, а по фосфору и калию соответственно через 20,8 и 26,5 лет.

В рассмотренном примере степень деградации определялась по отношению к исходному состоянию почвы. Недостатком такого подхода является следующее: не всегда известно, действительно ли состояние, принятое за исходное, характеризует недеградированную почву.

Возможно, в ряде случаев при наличии соответствующих данных целесообразно, наряду с характеристикой почвы, использовать и сведения о динамике показателей исследуемой почвы во времени. Это даст возможность более точно определить время действия деградационных процессов и показатели свойств недеградированной почвы.

Глава 6. ОЦЕНКА ПРОДУКТИВНОСТИ АГРОЭКОСИСТЕМ

Наиболее деятельная часть агроэкосистемы – агрофитоценоз, обладает конкретной биологической продуктивностью, которую возможно выразить количественно. Так, по сумме фотосинтетически активной радиации (ФАР) можно рассчитать величину потенциального урожая высеваемых в хозяйстве культур (ПУ), а по влагообеспеченности культур определить величину климатически обеспеченного уровня урожайности (КОУ). Основы методологии проведения подобных расчетов, которые неоднократно совершенствовались многими исследователями, заложил И.С. Шатилов, а в учебную практику ввел М.К. Каюмов (1982).

Расчет уровня действительно возможного урожая по запасам основных элементов питания строится на использовании данных агрохимической характеристики почв (содержание подвижных соединений фосфора и калия, а также содержание гумуса). Возможность установления лимитирующего рост и развитие растений элемента питания позволяет в дальнейшем определить дозу удобрения (удобрений) для получения уровня урожайности, обеспечиваемого запасами других элементов питания в почве.



6.1. Расчет величины потенциального урожая

Потенциальный урожай (ПУ или Убиол.) - это продуктивность биоценоза, которая теоретически могла бы быть достигнута при соблюдении всех элементов агротехнологии в идеальных почвенных и метеорологических условиях.

Лимитирующими факторами для получения ПУ являются биолого-генетические возможности культуры и приход фотосинтетически активной радиации.

Расчет ведут по формуле:

–  –  –

где Q - сумма ФАР за период вегетации культуры, ккал/га;

Kq - коэффициент усвоения ФАР посевами, %;

q - калорийность органического вещества единицы урожая, ккал/кг (Приложение 8).

Массу товарной продукции из общей биологической массы рассчитывают по формуле:

–  –  –

Пример 1 Определить потенциальный урожай озимой пшеницы, если приход ФАР за период вегетации культуры составляет 29 млрд. ккал/га, а коэффициент усвоения ФАР посевами - 3,0%.

Q = 2,9109 ккал/га (по условию задачи) Кq = 3% (по условию задачи) q = 4450 ккал/кг (Приложение 8) Тогда ПУ = (2,9109 3) / (100 4450 100) = 195,5 ц сухой биологической массы озимой пшеницы может быть получено с 1 га.

–  –  –

6.2. Определение климатически обеспеченного урожая по влагообеспеченности посевов Климатически обеспеченный урожай (КОУ) представляет собой продуктивность биоценоза, которая теоретически могла бы быть достигнута при выполнении всей агротехнологии на идеальной почве при реально складывающихся метеорологических условиях. Уровень КОУ лимитируется тепло- и влагообеспеченностью.

Расчет проводят по формуле:

–  –  –

где W - ресурсы продуктивной для растений влаги, мм;

Kw - коэффициент водопотребления, мм/га/ц (Приложение 10).

В свою очередь, ресурсы продуктивной для растений влаги рассчитывают по количеству осадков, которое может быть использовано растениями за вегетационный период, и запасу влаги в почве перед посевом. Для этого пользуются формулой:

–  –  –

где Д - годовая сумма осадков для конкретной территории;

К - коэффициент их использования, доля от 1,0.

Ниже приведены значения коэффициента использования осадков в зависимости от гранулометрического состава почв:

суглинистые почвы - 0,66-0,76 супесчаные - 0,52-0,60 песчаные - 0,42-0,48 глинистые, торфяно-болотные - 0,78-0,88 По полученным результатам заполняют таблицу 6.2.

–  –  –

При пересчете урожая общей биологической массы на товарную продукцию используют коэффициенты хозяйственной эффективности.

Пример 2 Определить климатически обеспеченный урожай озимой пшеницы по влагообеспеченности посевов, если среднегодовая сумма осадков 697 мм, запас влаги в почве перед посевом 125 мм; гранулометрический состав почвы тяжелосуглинистый.

Д = 697 мм (по условию задачи) К = 0,76 Тогда Р = 697 0,76 = 530 мм осадков сможет использовать озимая пшеница за период вегетации.

W1 = 125 мм (по условию задачи) С учетом отмеченного выше W = 125 + 530 = 655 мм - ресурсы продуктивной влаги, которые могут быть использованы озимой пшеницей на формирование урожая.

КW = 350 мм га / ц (Приложение 10) Тогда КОУW = (100 654) / 350 = 187,1 ц сухой биологической массы озимой пшеницы может быть получено с 1 га.

Кm (на абс. сух. массу) = 0,400 (Приложение 9) Кm (на станд. влажность) = 0,465 (Приложение 9)

–  –  –

Таким образом, КОУW (на абс. сух. массу) = 186,9 0,400 = 74,8 ц абсолютно сухого зерна озимой пшеницы может быть получено с 1 га.

КОУW (на станд. влажность) = 186,9 0,465 = 87,0 ц зерна озимой пшеницы влажностью 14% может быть получено с 1 га.

6.3. Определение действительно возможного урожая, получаемого за счет эффективного плодородия почвы Действительно возможный урожай (ДВУ) характеризует продуктивность агробиоценоза, которая теоретически достижима при соблюдении агротехнологии в реально складывающихся метеорологических условиях на конкретном поле. Уровень ДВУ лимитируется факторами плодородия.

Действительно возможный урожай, получаемый за счет почвенного плодородия (ДВУэф.), рассчитывается из уровней урожая, обеспечиваемого основными элементами питания - азотом, фосфором и калием. Величина ДВУ определяется питательным элементом, находящимся в минимуме.

–  –  –

Возможное потребление питательных элементов растениями рассчитывают, исходя из запаса элементов питания в почве с учетом коэффициентов их использования (Приложение 13). Расчет величины ДВУ, определяемого содержанием азота в почве, проводят по количеству гумуса в почве.

Пример 3 Определить действительно возможный урожай озимой пшеницы, который может быть получен за счет эффективного плодородия почвы, если почва серая лесная тяжелосуглинистая с содержанием гумуса 3,5%, подвижного Р2О5 100 мг/кг, обменного К2О 95 мг/кг; глубина пахотного слоя 22 см, плотность 1,2 г/см3 (т/м3).

Для расчетов запаса элементов питания в пахотном слое почвы необходимо, прежде всего, рассчитать массу пахотного слоя.

–  –  –

Из этого количества азота минерализуется 1,5% (Приложение 17).

Из 100 кг азота гумуса образуется 1,5 кг минерального азота, тогда из 4620 кг азота гумуса - Х кг минерального азота.

Х = (1,5 4620) / 100 = 69,3 кг - запас минерального азота на 1 га.

Найдем количество азота, которое может быть усвоено культурой.

Из этого запаса минерального азота озимая пшеница может усвоить 40% (Приложение 17).

Из каждых 100 кг азота усваивается 40 кг, тогда из 69,3 кг азота Х кг Х = (40 69,3) / 100 = 27,7 кг - количество азота, которое может быть усвоено из почвы озимой пшеницей на формирование урожая.

Рассчитаем уровень урожая культуры, обеспечиваемый запасами почвенного азота.

На формирование 1 ц зерна озимой пшеницы с учетом соответствующего количества побочной продукции требуется 3 кг азота (Приложение 11).

Д = 27,7 кг В = 3 кг/ц Тогда ДВУN = 27,7 / 3 = 9,2 ц/га.

–  –  –

Почвенные запасы калия могут обеспечить получение следующего уровня урожая.

На формирование 1 ц зерна озимой пшеницы с учетом соответствующего количества побочной продукции требуется 2,5 кг калия (Приложение 11).

Д = 25,1 кг/га В = 2,5 кг/ц Тогда ДВУК = 25,1 / 2,5 = 10,0 ц/га

–  –  –

Пример 4 Определить действительно возможный урожай озимой пшеницы, обеспечиваемый элементами питания минеральных и органических удобрений, если под нее внесено N60P60K60, 40 т/га полуперепревшего подстилочного навоза КРС; под предшествующую культуру внесено N30P40K40 и 2 года назад внесено N30P10.

1) Определение ДВУ, обеспечиваемого элементами питания минеральных удобрений

–  –  –

в) Расчет ДВУК.

Из калийных удобрений озимая пшеница усваивает в 1-й год 50%, во 2-ой - 10% (Приложение 15,16).

Из каждых 100 кг внесенного калия усвоится 50 кг,

–  –  –

2) Определение ДВУ, обеспечиваемого элементами питания органических удобрений

а) Расчет ДВУN Определим количество азота, внесенного с органическими удобрениями.

–  –  –

б) Расчет ДВУР Определим количество фосфора, внесенного с органическими удобрениями.

Со 100 кг навоза вносят 0,25 кг фосфора, тогда с 40000 кг навоза Х кг фосфора.

Х = (0,25 40000) / 100 = 100 кг фосфора будет внесено с 40 т полуперепревшего подстилочного навоза КРС.

Из этого количества озимая пшеница сможет усвоить 40% фосфора (Приложение 14).

Из 100 кг Р2О5, внесенного с навозом, усвоится 40 кг,

–  –  –

Таким образом, учитывая фактическую обеспеченность почвы подвижными формами элементов питания и остаточное влияние ранее внесенных в почву удобрений, можно ожидать, что реальный урожай озимой пшеницы не превысит 39,4 ц/га. Для построения урожая в 65,6 ц/га растениям не хватит азота, а урожая в 71,6 ц/га – азота и фосфора.

Конечно, предложенный выше способ определения возможной продуктивности фитоценоза далеко не идеален, но достаточно прост в употреблении, что позволяет рекомендовать его для практического сельского хозяйства.

Глава 7. ОСНОВНЫЕ НАПРАВЛЕНИЯ ОПТИМИЗАЦИИ

ФУНКЦИОНИРОВАНИЯ АГРОЭКОСИСТЕМ

Конструирование агроэкосистемы в чистом виде с соблюдением всех заданных параметров и принципов осуществимо лишь при сельскохозяйственном освоении новых территорий, что при современных масштабах вовлеченности земель в аграрное производство не имеет существенного значения. В используемых почвах реализация программы конструирования агроэкосистемы подразумевает лишь частичную или коренную реконструкцию уже сложившегося природно-хозяйственного механизма.

Основная идея регуляции и оптимизации процессов, протекающих в агробиогеоценозах, заключается в том, чтобы эти биокосные системы работали по принципу природных биоценозов (лугов, степей, лесов и пр.), основываясь на круговороте химических элементов и принципах стабильности существования экосистем. И хотя, в силу специфики агробиогеоценозов как систем не только экологических, но и социальноэкономических, практическая реализация этой идеи в полном объеме невозможна, следует к этому стремиться.

Вопросами выработки основных принципиальных позиций и конкретных мероприятий, касающихся проблем оптимизации сельскохозяйственных экосистем, посвящены работы многих исследователей, среди которых необходимо отметить Кольцова А.С. (1995), Уразаева Н.А. и др. (1996), Кирюшина В.И. (1996), Черникова В.А. (2000) и многих других.

В целом оптимизация функционирования агробиогеоценоза проводится на нескольких уровнях:

Уровень растительного организма и входящих в него подсистем;

Уровень популяции;

Уровень сообщества (агрофитоценоза);

Уровень агробиогеоценоза.

7.1. Оптимизация агробиоценоза на уровне популяции

Оптимизация процессов, протекающих в организме растения, представляет собой «конструирование» растения с целью обеспечения высокой продуктивности при хорошо выраженной конкурентоспособности и устойчивости к неблагоприятным факторам среды. Одна из возможностей решения этой проблемы – в биотехнологии.

При регуляции функционирования популяции растений прежде всего обращают внимание на ее плотность, которая во многом определяет взаимоотношения растений между собой. В самом начале развития популяции между особями складываются взаимоотношения, сходные с симбиозом, а по мере роста и развития растений возникают конкурентные взаимоотношения. В связи с этим необходимо проводить мероприятия по оптимизации плотности популяций культурных растений, которая должна быть такой, чтобы не было взаимного угнетения культурных растений, не снижался уровень их продуктивности и не возникало массового развития сорняков.

На урожайность растений, кроме плотности, влияет также способ посева и его составляющие: количество растений в рядке, ширина междурядий, ориентированность рядков по отношению к сторонам света и т.д. Возможно совмещение в одном посеве растений с разными сроками посадки (картофель). Или, например, один и тот же урожай может быть получен либо за счет меньшего числа крупных экземпляров, либо за счет большего числа мелких особей.

Один из эффективных методов повышения урожайности сельскохозяйственных культур - создание гетерогенных популяций за счет смеси разных сортов культурных растений одного вида (в Китае более 2 тысяч лет назад уже использовались сортосмеси риса). У нас практикуются сортосмеси кукурузы, пшеницы.

7.2. Оптимизация функционирования агрофитоценоза

Для достижения цели создания оптимальных условий жизни агрофитоценоза необходимо предусмотреть решение нескольких задач, среди которых следует отметить как минимум две:

Обеспечение культурных растений необходимыми им экологическими факторами (как средообразующими, так и ресурсными);

Соблюдение основных условий существования стабильных экосистем, прежде всего принципов видового разнообразия и динамического равновесия.

По первому направлению – обеспечение культурного фитоценоза основными экологическими факторами – возможно дать пример расчета доз внесения удобрений на планируемую продуктивность агроэкосистемы.

Для этого обратимся к примеру, рассмотренному в главе 6.

Расчеты показали, что запас азота в почве, представляющий собой сумму питательных веществ почвы, ранее внесенных минеральных и органических удобрений, позволяет получить урожай озимой пшеницы в 39,4 ц/га, запас фосфора - в 65,6, а калия - в 71,6 ц зерна с 1 га. Действительно возможный урожай пшеницы ограничивается запасами азота и составит 39,4 ц/га.

Для получения же максимально возможного по суммарным запасам фосфора урожая в 65,6 ц/га необходимо обеспечить дополнительное азотное питание, а урожая в 71,6 ц/га (по содержанию доступного растениям калия) - дополнительное азотно-фосфорное питание.

Восполнить недостаток питательных элементов в данном конкретном случае возможно за счет внесения минеральных удобрений.

1) Рассчитаем дозы внесения удобрений для достижения урожая озимой пшеницы в 65,6 ц/га.

Для получения такого уровня урожая растениям достаточно запасов калия и фосфора. Недостает только азота. Поэтому расчет делаем для азотных удобрений.

Необходимо сформировать 26 дополнительных центнеров зерна озимой пшеницы (65,6 - 39,4 = 26,2);

Для его построения, с учетом удельного выноса азота культурой (3,0 кг/ц), растениям необходимо 78 кг азота (26,2 х 3,0 = 78,6);

С учетом коэффициента использования азота из минеральных удобрений, равного 60%, внести под посев нужно 130 кг азота на 1 га (78,6 х 100 / 60);

2) Рассчитаем дозы внесения удобрений для достижения урожая озимой пшеницы в 71,6 ц/га.

Для получения такого уровня урожая растениям достаточно запасов калия. Недостает азота и фосфора. Поэтому расчет делаем для азотных и фосфорных удобрений.

а) Расчет по азоту

Необходимо сформировать 32,2 дополнительных центнеров зерна озимой пшеницы (71,6 - 39,4 = 32,2);

Для его построения, с учетом удельного выноса азота культурой (3,0 кг/ц), растениям необходимо 96,6 кг азота (32,2 х 3,0 = 96,6);

С учетом коэффициента использования азота из минеральных удобрений, равного 60%, внести под посев нужно 161 кг азота на 1 га (96,6 х 100 / 60).

б) Расчет по фосфору

Необходимо сформировать 6,0 дополнительных центнеров зерна озимой пшеницы (71,6 - 65,6 = 6,0);

Для его построения, с учетом удельного выноса фосфора культурой (1,1 кг/ц), растениям необходимо 6,6 кг фосфора (6,0 х 1,1 = 6,6);

С учетом коэффициента использования фосфора из минеральных удобрений, равного 20%, внести под посев нужно 33 кг фосфора (6,6 х 100 / 20).

Резюме по задаче.

1. Для получения максимально возможного по запасам элементов питания урожая озимой пшеницы в 65,6 ц/га, на данной почве, с учетом запаса доступных для растений соединений почвы, а также действия и последействия органических и минеральных удобрений, необходимо дополнительно внести 131 кг азота в виде минерального удобрения. Фосфорные и калийные удобрения дополнительно вносить не надо.



2. Для получения максимально возможного по запасам элементов питания урожая озимой пшеницы в 71,6 ц/га, на данной почве, с учетом запаса доступных для растений соединений почвы, действия и последействия органических и минеральных удобрений, необходимо дополнительно внести 161 кг азота и 33 кг фосфора в виде минеральных удобрений. Калийные удобрения дополнительно не требуются.

Таким образом, оценив количественно потенциальные возможности почвы в удовлетворении потребностей растений в питании, возможности усвоения культурой питательных веществ из ранее внесенных в почву удобрений (как органических, так и минеральных), а также имея представление о биологических требованиях отдельных культур к режиму питания, следует попытаться разумно соотнести потребности культур с возможностями почв и дать рекомендации по оптимальному распределению их как в пространстве (на территории отдельных полей и участков), так и во времени (выбрав соответствующий для этого севооборот). Это позволит экономно расходовать имеющиеся природные ресурсы и максимально уменьшить объемы рекомендуемых к внесению удобрений, обеспечив получение планируемых урожаев.

По второму направлению – соблюдение условий существования стабильных экосистем – можно отметить следующее. В сельскохозяйственном производстве издавна большое внимание уделяют формированию смешанных посевов разных видов культурных растений. Именно так в субтропиках и тропиках возделывают кукурузу, сорго, арахис, хлопок и другие растения, располагая их чередующимися рядками, или проводя их посев и уборку в разные периоды года. В нашей зоне распространены смешанные посевы кормовых трав (кормосмеси): вики с овсом, кукурузы или подсолнечника с бобами, фасолью.

Функционирование агрофитоценоза невозможно представить без сорняков. При этом контроль за их численностью предполагает определение порога засоренности посева, т.е. той плотности популяции сорняков, с которой начинается снижение урожая. Установлено, что проективное покрытие площади сорняками в 10-15% не является причиной снижения урожайности культурных растений. Способов же снижения численности сорных растений достаточно много: подбор севооборота, при котором смена посевов максимально подавляла бы сорняки; посев пропашных культур; сроки посева и др.

Однако в последние годы несколько изменилась трактовка роли сорняков в агробиогеоценозах. Современные фитоценологи считают, что в полном искоренении сорняков нет необходимости, т.к. они улучшают экологическую обстановку в агробиогеоценозе:

Активно влияют на биотический круговорот, т.к. вокруг их корней формируется сообщество бактерий, грибов и других организмов - деструкторов, ускоряющих минерализацию и активизирующих ход геохимических циклов;

Биологическое поглощение ими элементов питания предохраняет последние от вымывания;

Сорняки с глубокой корневой системой извлекают минеральные вещества из глубинных слоев почвы;

Сорная растительность защищает почву от эрозии;

Сорняки разнообразят видовой состав агробиоценоза, способствуя увеличению численности связанных с ними видов животных и особенно насекомых, что препятствует непомерному размножению насекомых - доминантов (посевы без сорняков чаще поражаются вредителями).

Создаваемые агроценозы должны быть не только высокопродуктивны, но и не должны вызывать нарушений в местных экосистемах, поэтому обязательно проводят работы по сохранению естественной растительности в качестве буферных полос и зон, а также соблюдению пропорций между конструируемой агроэкосистемой и натурбиогеоценозом. Кроме этого, прилагают немало усилий для сохранения в агробиогеоценозе сложившихся ранее микробоценоза и зооценоза, так как это значительно повышает устойчивость и стабильность существования агроэкосистемы.

В этом отношении большое внимание следует уделить засоренности посевов, которая в современных условиях резко повысилась. В сообществе сорняков доминируют корнеотпрысковые многолетники – вьюнок полевой, осоты розовый и желтый, молокан татарский, пырей и др. Важный фактор распространенности сорняков – старение посевов многолетних трав, которые ныне обновляются на уровне 5-7% в год.

Отсюда возникает необходимость разработки новых технологий борьбы с сорняками на основе учета биоценотических отношений между различными видами растений. При этом следует учитывать, что способность культурных растений противостоять сорнякам зависит от ряда факторов: размера семян и посадочного материала; количества надземной и подземной массы, накопленной озимыми и многолетними культурами в предыдущие периоды вегетации; темпов роста; длины вегетационного периода; соотношения плотности культурных и сорных растений; фитосанитарного состояния и агротехники посевов; реакции культурных и сорных растений на меняющиеся погодные условия.

Например, высокая конкурентоспособность посевов ячменя и гороха обусловлена высокой исходной массой культурных растений. Просо, сахарная свекла, кукуруза и подсолнечник обладают значительно меньшей массой в начале вегетации. Растения сои, наоборот, в первые недели развития формируют относительно большую массу, в дальнейшем темпы прироста снижаются, а засоренность посевов увеличивается.

Пропашные культуры превосходят сорные растения по скорости накопления биомассы, в результате чего доля последних в общей массе агрофитоценоза снижается. Наибольшей конкурентоспособностью среди пропашных обладает подсолнечник.

Таким образом, ранние озимые и яровые зерновые культуры, многолетние травы, горох и подсолнечник относительно устойчивы к сорнякам. Свекла, соя и кукуруза характеризуется высокой чувствительностью к сорным растениям, произрастающим в посевах. Просо занимает промежуточное положение по устойчивости к сорнякам среди этих двух групп сельскохозяйственных культур.

Относительно возможностей уничтожения семян сорняков в почве можно отметить следующее. Некоторые виды крестоцветных (например, рапс) синтезируют в своих корнях МИТ (метилизотиоцианат) и, выделяя его в почву, способствуют гибели семян сорняков в пахотном слое. Можно использовать для этого энергию электромагнитных колебаний (СВЧ), а также метод соляризации (покрытие почвы прозрачной полиэтиленовой пленкой). В солнечные дни под нею температура почвы достигает 40-500, что убивает до 90 % семян сорняков. Метод соляризации хорошо действует на влажной почве, способствуя гибели патогенной микрофлоры.

Достаточно новый способ борьбы с сорняками – применение лазерных гербицидов, то есть использование природных веществ, гербицидное действие которых развивается только под действием солнечного света. Типичным соединением этой группы является дельтааминолевулиновая кислота (АЛА).

Особое внимание заслуживают вопросы устойчивости растений к загрязнению тяжелыми металлами. Здесь следует подчеркнуть, что необходимо различать две стороны этого вопроса: токсичность ТМ для человека и животных и токсичность их для самих растений. В этой связи все ТМ условно можно разделить на фитотоксичные (токсичность для растений выше, чем для животных) и токсичные (прежде всего для человека и животных). Установлено, что к фитотоксичным ТМ относятся Cu, Ni, Zn. Уровни нормального содержания ТМ в растениях определяются видом ТМ и колеблются в пределах от 0,02 мг (ртуть) до 60 мг (цинк).

В растениях ТМ нарушают ход биохимических процессов, влияют на синтез и функции многих активных соединений: ферментов, витаминов, пигментов. При высоких концентрациях Cd, Pb, Cu, и Zn происходит снижение количества хлорофилла; повышенное количество Cd, Pb, и Zn снижает поступление в растение Ca и P.

Все растения различаются между собой по способности к аккумуляции ТМ: как по количеству поступления, так и по приоритетности поглощения. Так, например, картофель, гречиха и морковь поглощают очень много Cu, томаты и свекла - Cd. Для отдельных растений в настоящие время установлены ряды поглощения ТМ 27:

Овес - NiCuCoCrZnMn Пшеница - CdNiCuZn Рожь - ZnCdPbCu Сахарная свекла - CdCuZnCrNiMn Кукуруза, подсолнечник CdNiPb или CdPbZn В целом при разработке и, особенно при освоении зональных адаптивно-ландшафтных систем земледелия и технологий, необходимо соблюдать определенную последовательность в проведении мероприятий. Так, для каждого уровня плодородия почв должны быть свои технологические решения. Например, на низкоплодородных кислых почвах Нечерноземной зоны необходимо, в первую очередь, обеспечить защиту почв от эрозии и добиться рационального использования местных почвенно-климатических ресурсов путем оптимизации системы агротехнических приемов (севооборот, способ обработки почвы, сорт, срок посева, методы ухода за посевами). Одновременно необходимо проводить мероприятия по снижению кислотности почв, ликвидации переувлажнения или подтопления.

Только после решения этих вопросов можно эффективно использовать минеральные и органические удобрения, сидераты, биологический азот. И лишь когда почва будет окультурена, можно применять интенсивные технологические воздействия сельскохозяйственных культур. Максимальные результаты в этом случае достигаются при использовании компьютерных программ управления формированием урожая и качеством продукции.

7.3. Оптимизация функционирования агробиогеоценоза

При регуляции и оптимизации процессов, протекающих в агробиогеоценозе, в дополнение к ранее рассмотренным следует добавить оптимизацию почвенных процессов.

Прежде всего, полевой участок готовят к посеву, продумывая способ обработки почвы, необходимость парования ее, определяя мероприятия по повышению ее плодородия. Большую роль играет регуляция и оптимизация водного режима почв. Проводят работы по максимизации уровня содержания диоксида углерода в приземном слое воздуха при помощи органических удобрений и отходов, активизации внутрипочвенных биологических процессов, а также комплекс мероприятий по увеличению запасов органических веществ и гумуса в почвах.

Среди последних наибольшее значение имеют внесение органических удобрений, в том числе сидератов, а также учет количества корневых и послеуборочных остатков растений, возделываемых или произрастающих в поле.

Внесение органических удобрений как прием повышения почвенного плодородия Внесение органических удобрений (навоза, птичьего помета, фекалий, компоста) - важнейший прием повышения плодородия почв. При их систематическом применении происходит улучшение биологических (микрофлора), физических (структура), химических (содержание гумуса, обеспеченность фосфором, калием и микроэлементами), физикохимических (емкость поглощения, степень насыщенности почв основаниями, реакция среды, буферность) свойств, водного и воздушного режимов почв.

По возможности синтеза гумусовых веществ все органические удобрения сильно разнятся. Для сравнительной оценки их по способности к гумификации широко пользуются условными коэффициентами перевода различных видов органических удобрений в подстилочный полуперепревший навоз крупного рогатого скота (способность которого к образованию гумуса принята за единицу). При этом количество гумуса, образующегося в почве из 1 т навоза (подстилочного полуперепревшего), равно: для дерново-подзолистых супесчаных почв - 50 кг, дерново-подзолистых суглинистых - 65 кг, серых лесных - 70 кг, черноземов

Коэффициенты перевода отдельных видов органических удобрений по их способности к гумусообразованию в стандартный подстилочный полуперепревший навоз:

бесподстилочный навоз (влажность 90-93%) - 0,5 жидкий навоз (влажность 93-97%) - 0,25 навозные стоки (влажность более 97%) - 0,1 птичий помет, торфо-навозный компост - 1,2 солома - 3,4 сидеральные удобрения (естеств. влажности) - 0,25.

При условии использования в хозяйстве других видов органических удобрений возможные объемы накопления гумуса в почве можно рассчитать, воспользовавшись для этого коэффициентами перевода их в стандартный навоз (не путать: сравнение отдельных видов органических удобрений идет по их способности к гумусообразованию, определяющейся прежде всего содержанием в них углерода, а не по их удобрительному действию на культуры).

Зеленое удобрение (сидераты) представляет собой растительную массу (только надземную или всю биологическую) естественных или культивируемых зеленых растений, которые запахиваются в почву с целью повышения плодородия почв и обеспечения дополнительного питания высеваемых культур. Для этой цели чаще всего используют многолетние и однолетние бобовые культуры, но перегной растительного происхождения может образовываться и из биомассы сорняков, произрастающих на поле.

Количественно способность зеленой массы растений к гумусонакоплению может быть выражена следующими цифрами: от 40 до 60 кг гумуса из 1 т растительных остатков естественной влажности многолетних бобовых трав. Что касается однолетних бобово-злаковых трав и рапса, то их способность к гумусообразованию выражают, приравнивая урожай с площади в 1 га к 10 т навоза.

Возможность пополнения запасов органического вещества в почве за счет растительных остатков возделываемых культур Сельскохозяйственные культуры в силу своих биологических особенностей и различий в технологии возделывания неодинаково влияют на режим органического вещества. По уменьшению поступления в почву послеуборочных остатков, корневой массы и опада их можно расположить в виде следующего ряда: многолетние травы - кукуруза на силос

Озимые зерновые - яровые зерновые - зернобобовые - сахарная и кормовая свекла - картофель - лен.

Изменяя соотношение площади под разными культурами, можно в значительной мере регулировать поступление в почву органического вещества с растительными остатками. При этом общее поступление растительных остатков в почву возрастает при увеличении урожайности культур, хотя относительное накопление их в расчете на 1 ц основной продукции снижается.

Количество послеуборочных остатков, поступающих в пахотный слой почвы, для разных культур изменяется довольно существенно. Так, например, озимые культуры оставляют после себя 2,0-3,2 т, яровые зерновые - 2,0-2,5 т, клевер 4,0-7,0 т, кукуруза 2,0-4,6 т, картофель - 0,8-1,2 т, сахарная свекла - 1,0-1,5 т, люпин 2,0-3,0 т сухого вещества на 1 га.

В среднем, в зерновых агроценозах поступление растительных остатков в почву колеблется от 1,5 до 5,0 т сухого вещества на 1 га.

Количество вновь образованного из растительных остатков культурных растений гумуса зависит как от вида растений, так и от типа почв. Так, из 1 т сухого вещества растительных остатков многолетних злаковых и бобовых трав, зерновых культур и льна может быть синтезировано от 150 до 250 кг гумуса (здесь и далее указан размах колебаний объемов новообразования гумусовых соединений на почвах в ряду от дерново-подзолистых супесчаных до черноземов выщелоченных и оподзоленных в разной степени суглинистых, соответственно); 1 т сухого вещества растительных остатков силосных культур - от 100 до 150 кг;

картофеля, корнеплодов и овощей - от 50 до 80 кг; соломы зерновых (без корней) - от 150 до 220 кг.

Однако возможность количественного определения и установления истинного баланса гумуса сильно осложняется в связи с тем, что в почве одновременно проходят два взаимосвязанных и взаимообусловленных, но разнонаправленных процесса: синтез (гумификация) и распад (минерализация) органического вещества. Полностью исключить минерализацию гумуса невозможно, следовательно, для обеспечения его расширенного воспроизводства приход органического вещества в почву (в виде корневых и пожнивных остатков, органических удобрений, сидеральной массы) должен перекрывать масштабы его минерализации.

В систему реконструирования агроэкосистемы входит и ряд агрохимических мероприятий. Так, повышение доступности остаточных фосфатов, аккумулируемых в почве вследствие разных причин, возможно за счет мелиоративных приемов, обеспечивающих ослабление адсорбции фосфатов и изменение соотношения фракций Са-Р к Fe-P, а также поддержание сбалансированного состояния азота и фосфора в почвенном растворе (N:P2O5 близко к 0,3). Этому способствуют органические удобрения, активирующее биохимические процессы мобилизации фосфатов; применение азотных удобрений на почвах с повышенным содержанием фосфора; возделывание культур, биологически ориентированных на усвоение фосфора из разных фосфатных соединений.

Так, например, гречиха и горох адаптированы к алюмофосфатам; люпин и ячмень – к алюмо- и кальцийфосфатам; овес – к алюмо- и железофосфатам. Высокой способностью усваивать остаточные фосфаты обладают также люцерна и эспарцет.

Одним из главных направлений в оптимизации функционирования агроэкосистем является их максимальная биологизация (фиксация азота из воздуха, биологические средства защиты от вредителей, болезней и сорняков), и сокращение объемов применения средств химической защиты растений. Немаловажным является и направление, при котором оптимизация минерального питания растений обеспечивается на основе использования машинной технологии дифференцированного внесения удобрений и других агрохимических средств в системе координатного земледелия в зависимости от неоднородности плодородия почв, состояния посевов и отзывчивости сельскохозяйственных культур на удобрения. Перспективным в этом направлении является работа системы контроля за экологическим состоянием агроэкосистем на основе внедрения производственного агроэкологического мониторинга состояния земельных угодий, создание специальной службы охраны почв, а также развитие концепции, базовой основой которой является оценка экологического риска, отражающего уровень опасности не только для человека, но и для живой природы.

Таким образом, к числу факторов эффективного воздействия на продуктивность агрофитоценоза и оптимизацию функционирования агробиогеоценозов относятся:

а) создание комплекса благоприятных почвенных условий (ликвидация избыточной кислотности, повышенного содержания органического вещества в почве, улучшение физических и биологических свойств почвы) и повышение бонитета почвы;

б) рациональное применение минеральных удобрений (с учетом содержания элементов питания в почве, запасов влаги, биологии возделывания сорта);

в) повышение эффективности использования минеральных удобрений (применение капсулированных удобрений и удобрений с пролонгированным действием; использование ингибиторов нитрификации;

внесение фосфора и калия в рядки с целью уменьшения их фиксации почвой; использование поверхностно-активных веществ и других модифицирующих добавок в составе удобрений);

г) улучшение корневого питания растений за счет поддержания оптимального соотношения основных питательных веществ в почве и возделывания культур и сортов, имеющих высокий коэффициент использования удобрений;

д) широкая химическая мелиорация почв с учетом особенностей почв и биологии культур, выращиваемых в севообороте;

е) использование прогрессивных способов орошения (импульсное, капельное), направленных на экономное расходование воды, с учетом критических периодов в водоснабжении растений;

ж) проведение защитных, предупредительных агрохимических мероприятий, направленных на предотвращение полегания посевов, повышение устойчивости растений к экологическим стрессам, предотвращение болезней, снижение численности сорняков и насекомыхвредителей, что достигается за счет:

Внесения ретардантов (хлорхолинхлорид–ССС; 2-хлорэтилфосфоновая кислота и другие препараты);

Использования фиторегуляторов антистрессового характера действия с целью повышения засухо-, влаго-, холодо-, морозо-, солеустойчивости растений (картолин, ССС и другие препараты);

Пестицидных препаратов с целью уменьшения заболеваемости растений и снижения численности сорняков и насекомыхвредителей с учетом реакции (толерантности) сортов на их обработку;

з) использование биологических средств воздействия на агрофитоценозы, что включает:

Применение препаратов клубеньковых бактерий (ризоторфин) на бобовых растениях;

Применение бактериальных препаратов, созданных на основе высокоэффективных штаммов ассоциативных азотфиксаторов на небобовых культурах (агрофил, ризоэнтерил, ризоагрин, мизорин, азоризин и т.д.);

Применение бактериальных средств защиты растений от вредителей (битоксибациллин, дендробациллин, энтобактерин, боверин и др.);

Подбор сортов, наиболее приспособленных к местным почвенноклиматическим условиям.

В целом работы по регуляции и оптимизации процессов, протекающих в агробиогеоценозах, требует от земледельца немалых знаний, большого мастерства, умения «чувствовать пульс природы» и уверенности рачительного хозяина.

Эффективность сельскохозяйственного производства, и, в первую очередь, его почвенно-агрохимической составляющей, заключается в рациональном использовании ранее накопленного запаса плодородия почв и его повышении. При этом важно как можно разумнее использовать природные ресурсы, что позволит сэкономить материальные затраты, заменив их интеллектуальными.

Литература

1. Агроэкология /В.А. Черников, Р.М. Алексахин, А.В. Голубев и др.;

под ред. В.А. Черникова, А.И. Чекереса. – М.: Колос, 2000.

2. Акимова Т.А., Хаскин В.В. Экология: Учебник для вузов. – М.:ЮНИТИ, 1998.

3. Витязев В.Г., Макаров И.Б. Общее земледелие. - М.: МГУ, 1991.

5. Гапонюк Э.И., Малахов С.Г. Комплексная система показателей экологического мониторинга почв // Миграция загрязняющих веществ в почвах и сопредельных средах. - Л.: Гидрометеоиздат, 1985.

6. Геохимия окружающей среды. - М.: Недра, 1990.

7. Гиляров А.М. Популяционная экология. - М.: МГУ, 1990.

8. Глазовская М.А. Принципы классификации почв по их устойчивости к химическому загрязнению// Земельные ресурсы мира, их использование и охрана. - М.: 1978. - С. 85-98.

9. Глазовская М.А. Опыт классификации почв мира по их устойчивости к техногенным кислотным воздействиям // Почвоведение. - 1990.

- № 10. - С. 82-96.

10. Глазовская М.А. Методологические основы эколого-геохимической устойчивости почв к техногенным воздействиям. М.: МГУ, 1997.

11.Глазовская М.А. Проблемы и методы оценки эколого-геохимической устойчивости почв и почвенного покрова к техногенным воздействиям // Почвоведение. - 1990.- № 1.

12. ГОСТ 17.8.1.01-86 (СТ СЭВ 5303-85). Охрана природы. Ландшафты.

Термины и определения – 8 с.

13. ГОСТ 17.8.1.02-88 (СТ СЭВ 6005-87). Охрана природы. Ландшафты.

Классификация – 7 с.

14. Грин Н., Стаут.У., Тейлор Д. Биология: в 3-х т. Т.2.: Пер. с англ.М.: Мир, 1990.

15. Гришина Л.А., Копцик Г.Н., Моргун Л.В. Организация и проведение почвенных исследований для экологического мониторинга. - М.:

Изд-во МГУ, 1991.

16. Добровольский Г.В., Никитин Е.Д. Функции почв в биосфере и экосистемах. – М.: Наука, 1990.

17. Докучаев В.В. Наши степи прежде и теперь. Соч., т.VI.- М.: АН СССР, 1951.

18. Дылис Н.В. Основы биогеоценологии. Москва: МГУ, 1978.

19. Жученко А.А. Стратегия адаптивной интенсификации сельского хозяйства (концепция). – Пущино: НЦ РАН, 1994.

20. Каюмов М.К. Справочник по программированию продуктивности полевых культур. – М. : Россельхозиздат, 1982.

21. Кирюшин В.И. Экологические основы земледелия. – М. : Колос, 1996.

22. Ковда В.А. Биогеохимия почвенного покрова. –М: Наука, 1985.

23. Кольцов А.С. Сельскохозяйственная экология. – Ижевск: Изд-во Удмуртского университета, 1995.

25. Методы почвенной микробиологии и биохимии / Под ред. Д.С.

Звягинцева. М., 1980.

26. Микроорганизмы и охрана почв.- М.: МГУ, 1989.

27. Милащенко Н.З., Соколов О.А., Брайсон Т., Черников В.А. Устойчивое развитие агроландшафтов / В 2-х Т.Т. – Т.1. – Пущино: ОНТИ ПНЦ РАН, 2000.

28. Милащенко Н.З., Соколов О.А., Брайсон Т., Черников В.А. Устой чивое развитие агроландшафтов / В 2-х Т.Т. – Т.2. – Пущино: ОНТИ ПНЦ РАН, 2000.

29. Одум Ю. Экология. В 2 т.- М. : Мир, 1986.

30. Одум Ю. Основы экологии.- М.: Мир, 1975.

31. Основные микробиологические и биохимические методы исследования почвы (Метод. рекомендации). - Л., 1987.

32. Порядок определения размеров ущерба от загрязнения земель химическими веществами. - М., 1993.

33. Почвенно-экологический мониторинг и охрана почв / Под ред. Д.С.

Орлова, В.Д. Васильевской. - М.: Изд-во МГУ, 1994.

34. Работнов Т.А. Экспериментальная фитоценология. – М.: МГУ, 1998.

35. Реймерс Н.Ф. Экология. Теории, законы, правила, принципы и гипотезы.- М.: Россия Молодая, 1994.

36. Розанов Б.Г. Основы учения об окружающей среде. Москва: МГУ, 1984.

37. Сельскохозяйственная экология /Н.А. Уразаев, А.А. Вакулин, В.И.

Марымов и др.. – М.: Колос, 1996.

38. Снакин В.В. и др. Система оценки степени деградации почв. - М., 1992.

39. Состояние окружающей среды и природных ресурсов Нижегородской области в 1997 году: Ежегодный доклад/ Н. Новгород: Изд-во Волго-Вятской академии государственной службы, 1998,1999,2000.

40. Сукачев В.Н. К вопросу о борьбе за существование между биотипами одного и того же вида// Юбил. сб., посвящ. И.П.Бородину. Л., 1927.

41. Уразаев Н.А., Вакулин А.А. и др. Сельскохозяйственная экология. – М. : Колос, 1996.

42. Harper J.L. Population biology of plants. L., N.Y., 1977. 892 pp.

43. Kays S., Harper J.L. The regulation of plant and tiller density in a grass sward// J. Ecol. 1974. Vol. 62. N 1. P. 97-105.

44. Mackay D.M., Smith L.A. Agricultural chemicals in groundwater:

Monitoring and management in California/ J. of Soil and Water Conserv.

1990. Vol. 45. N. 2. P. 253-255

45. Powell C.L. Effect of phosphate fertiliser and plant density on phosphate inflow into ryegrass roots in soil/ Plant and soil. 1977. Vol. 47. N. 2.

Silvertown J.W. Introduction to plant population ecology. L., N.Y., 1987.

46. Tansley A.G. The use and abuse of vegetational concepts and terms/ Ecology. 1935. N. 16.

ПРИЛОЖЕНИЯ

–  –  –

* - в пересчете на серу;

** - подвижные формы меди, никеля и цинка извлекают из почвы аммонийно-ацетатным буферным раствором с рН 4,8; кобальта - аммонийно-натриевым буферным раствором с рН 3,5 для сероземов и рН 4,7 для дерново-подзолистых почв.

–  –  –

Уровень со- Мероприятия держания и загрязнения Содержание: Для биологически важных элементов (цинк, медь и др.) очень низкое, необходимы микроудобрения или добавки в корма в занизкое висимости от содержания подвижных форм соединений элементов в почвах и содержании их в продукции Среднее Не требуются Повышенное Устранение влияния источника загрязнения и периодический контроль почв и продукции Высокое Обязательное устранение влияния источника загрязнения, постоянный контроль содержания тяжелых металлов в почвах и продукции Оч.

Высокое Подбор сельскохозяйственных культур, не накапливаюнизкий уро- щих тяжелые металлы, комплекс агротехнических мер по вень загряз- уменьшению поступления тяжелых металлов в продукнения) цию (известкование, применение органических и минеральных удобрений); исключить выращивание зеленных культур и овощей Загрязнение: Выращивание культур, не накапливающих тяжелые меСреднее таллы (зерновые на зерно, семенники трав, технические культуры, саженца плодовых и ягодных культур, цветоводство) с обязательным применением комплекса агротехнических мер по снижению поступления тяжелых металлов в продукцию Высокое, Исключить выращивание культур для продовольственоч. Высокое ных целей. Необходимы дополнительные разработки по рекультивации почв.

–  –  –

Примечание: 1 - урожайность культур, ц/га основной продукции;

2 - накопление пожнивно-корневых остатков, ц сухого вещества на 1 ц основной продукции

–  –  –

Нижегородская государственная сельскохозяйственная академия 603107, г. Н. Новгород, пр. Гагарина, 97 Издательство Волго-Вятской академии государственной службы 603600, Нижний Новгород-292, пр. Гагарина, 46


Похожие работы:

«МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙФЕДЕРАЦИИ РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТМСХА ИМЕНИ К.А. ТИМИРЯЗЕВА (ФГБОУ ВПО РГАУ МСХА имени К.А. Тимирязева) Факультет природообустройства и водопользования Кафедра сельскохозяйственного водоснабжения и водоотведения А.Н. Рожков, М.С. Али МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ ВЫПУСКНОЙ КВАЛИФИКАЦИОННОЙ РАБОТЫ Методические указания Москва Издательство РГАУ-МСХА УДК 628 М54 «Методические указания по выполнению выпускной квалификационной...»

« «КУБ АНСКИЙ ГОСУДАРСТ ВЕННЫЙ АГРАР НЫЙ УНИВЕРСИТЕТ » Учебно-методическое пособие по дисциплине Фундаментальная агрохимия Код и направление 35.06.01 Сельское хозяйство подготовки Наименование профиля программы подготовки научно– Агрохимия педагогических кадров в аспирантуре/ Квалификация (степень) выпускника Факультет Агрохимия и...»

« «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ПРОВЕДЕНИЮ СЕМИНАРСКИХ ЗАНЯТИЙ по дисциплине Б1.В.ОД.2 Организация учебной деятельности в вузе и методика преподавания в высшей школе Код и направление 38.06.01 Экономика подготовки Наименование программы подготовки научно-педагогических кадров в аспирантуре...»

«МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ по дисциплине Б1.В.ОД.2 Организация учебной деятельности в вузе и методика преподавания в высшей школе Код и направление 38.06.01 Экономика подготовки Наименование программы подготовки научно-педагогических кадров в аспирантуре...»

«МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» ОСНОВЫ НАУЧНОИССЛЕДОВАТЕЛЬСКОЙ ДЕЯТЕЛЬНОСТИ Учебно-методическое пособие для самостоятельной работы обучающихся по направлению подготовки «Философия, этика и религиоведение» (уровень подготовки кадров высшей квалификации) Краснодар КубГАУ УДК 001.89:004.9(075.8) ББК 72.3 Б91 Рецензент: В. И....»

«МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» Методические указания по проведению практических занятий по дисциплине Б1.В.ДВ.2 Техническая энтомология Код и направление 06.06.01 Биологические науки подготовки Наименование профиля / программы подготовки научноЭнтомология педагогических кадров в аспирантуре Квалификация Исследователь....»

«Министерство сельского хозяйства Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» УТВЕРЖДАЮ Председатель Совета юридического факультета д.ю.н., профессор В.Д. Зеленский «_» 20_ г.протокол № РАБОЧАЯ ПРОГРАММА дисциплины Б3.Б.19 КРИМИНАЛИСТИКА Код и направление подготовки 030900.62 Юриспруденция Профиль Уголовно-правовой, гражданскоподготовки правовой,...»

«Министерство сельского хозяйства Российской Федерации Департамент мелиорации Федеральное государственное бюджетное научное учреждение «РОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ПРОБЛЕМ МЕЛИОРАЦИИ» (ФГБНУ «РосНИИПМ») МЕТОДИЧЕСКИЕ УКАЗАНИЯ «КОМПЛЕКС НАУЧНО ОБОСНОВАННЫХ МЕРОПРИЯТИЙ ПО ЭФФЕКТИВНОМУ ТЕХНИЧЕСКОМУ ОБСЛУЖИВАНИЮ ТУННЕЛЕЙ МАГИСТРАЛЬНЫХ КАНАЛОВ» Новочеркасск Методические указания «Комплекс научно обоснованных мероприятий по эффективному техническому обслуживанию туннелей магистральных...»

«МИНИСТ ЕР СТВО СЕЛЬСКОГО ХОЗЯЙСТ ВА И ПРОДОВОЛЬСТВИЯ Р ЕСПУБЛИКИ БЕЛАРУСЬ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «ГРОДНЕНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ » Кафедра экономики АПК Экономика сельского хозяйства Методиче ские указания по выполнению контроль ной работы дл я студе нтов биоте хнологиче ского факуль те та НИСПО Гродно 20 УДК 631.1(072) ББК 65.32я73 Э 40 Авторы: В.И. Высокоморный, А.И. Сивук Рецензенты: доцент С.Ю. Леванов; кандидат сельскохозяйственныхнаук А.А. Козлов. Экономика сельского...»

«МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ФГБОУ ВПО «Кубанский государственный аграрный университет» УЧЕБНЫЕ И НАУЧНЫЕ ИЗДАНИЯ. Основные виды и аппарат Методические указания по определению вида издания и его соответствия содержанию для профессорско-преподавательского состава Кубанского госагроуниверситета Краснодар КубГАУ Составители: Н. П. Лиханская, Г. В. Фисенко, Н. С. Ляшко, А. А. Багинская Учебные и научные издания. Основные виды и аппарат: метод. указания по определению вида...»

«МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» Генетика признаков качества сельскохозяйственных растений Методические указания Для самостоятельной работы аспирантов направления: 06.06.01 – биологические науки Краснодар, 2015 Составитель: С.В. Гончаров Генетика признаков качества сельскохозяйственных растений: метод. указания для...»

«МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «СТАВРОПОЛЬСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» УТВЕРЖДАЮ Проректор по учебной и воспитательной работе И.В. Атанов «_»2014 г. ОТЧЕТ о самообследовании основной образовательной программы высшего образования 111100.68 Зоотехния (код, наименование специальности) Ставрополь, 201 СТРУКТУРА ОТЧЕТА О САМООБСЛЕДОВАНИИ ОБРАЗОВАТЕЛЬНОЙ...»

«Бюллетень новых поступлений за февраль 2015 года. А683 Анненкова, Надежда Николаевна. bung macht den Meister: [учебное пособие] : с заданиями для самоконтроля для студентов первого семестра всех специальностей / Н. Н. Анненкова, Л. А. Шишкина; [Воронежский государственный аграрный университет]. Woronesh: Воронежский государственный аграрный университет, 2014. 98 с. : ил. На обороте титульного листа авторы указаны как составители. Библиогр.: с. 95. 32,30 В752 Воронежский заповедник: по...»

« государственный аграрный университет им. А^.А*о|!й«йш:кого НИН А.С. 2 0 ^ "Т. РА С СМ О ТРЕН О на заседании Ученого Совета ЗабАИ « // » 20/?. Основная профессиональная образовательная программа высшего образования по направлению подготовки 36.06.01 В Е Т Е РИ Н А РИ Я И ЗО О Т Е Х Н И Я уровень подготовки кадров: В Ы С Ш АЯ КАТЕГОРИЯ...»

«МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «СТАВРОПОЛЬСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» УТВЕРЖДАЮ о учебной и й работе И.В. Атанов 2014 г. ОТЧЕТ о самообследовании основной образовательной программы высшего образования 020800.62 Экология и природопользование (код, наименование специальности или направления подготовки) Ставрополь, 20 СТРУКТУРА ОТЧЕТА О САМООБСЛЕДОВАНИИ...»

«Том 7, №1 (январь февраль 2015) Интернет-журнал «НАУКОВЕДЕНИЕ» [email protected] http://naukovedenie.ru Интернет-журнал «Науковедение» ISSN 2223-5167 http://naukovedenie.ru/ Том 7, №1 (2015) http://naukovedenie.ru/index.php?p=vol7-1 URL статьи: http://naukovedenie.ru/PDF/45EVN115.pdf DOI: 10.15862/45EVN115 (http://dx.doi.org/10.15862/45EVN115) УДК 311:21 Ларина Татьяна Николаевна ФГБОУ ВПО «Оренбургский государственный аграрный университет» Россия, Оренбург 1 Заведующая кафедрой...»

«Министерство сельского хозяйства РФ Трубчевский филиал ФГБОУ ВО Брянский ГАУ МЕТОДИЧЕСКИЕ УКАЗАНИЯ по выполнению выпускной квалификационной (дипломной) работы студентам специальности 36.02.01 Ветеринария Трубчевск 2015 Содержание Раздел I. ПОРЯДОК ПОДГОТОВКИ И ЗАЩИТЫ ВЫПУСКНЫХ 4 КВАЛИФИКАЦИОННЫХ (ДИПЛОМНЫХ) РАБОТ 1.1. Общие положения 5 1.2. Подготовка дипломной работы 6 1.3. Выбор и закрепление темы дипломной работы 6 1.3.1. Подбор и изучение специальной литературы 6 1.3.2. Сбор и обработка...»

«МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное бюджетное государственное образовательное учреждение высшего профессионального образования «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» МЕТОДИЧЕСКИЕ УКАЗАНИЯ для самостоятельной работы по дисциплине «Химия и технология вина» на тему «Проблема натуральности виноградных вин» для студентов, обучающихся по направлению 260100.62 Продукты питания из растительного сырья Краснодар 2014 Методические указания рассмотрены и одобрены на...»

«МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» Кафедра управления и маркетинга МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ПРОВЕДЕНИЯ СЕМИНАРСКИХ, ПРАКТИЧЕСКИХ ЗАНЯТИЙ АСПИРАНТОВ ПО ДИСЦИПЛИНЕ «САМОМЕНЕДЖМЕНТ: УПРАВЛЕНИЕ ВРЕМЕНЕМ» для аспирантов Краснодар, 2015 Методические указания для проведения семинарских, практических занятий и организации...»
Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам , мы в течении 1-2 рабочих дней удалим его.

Земная поверхность представлена огромным разнообразием естественных и преобразованных (антропогенных) экосистем. Общим свойством для каждой из них является автотрофность в результате фотосинтеза под действием однонаправленного потока энергии Солнца, проходящего через вещества и живые организмы как естественных, так и измененных экосистем.

Для растения составляющие суммарного потока энергии Солнца имеют существенное значение: благодаря пространственно-временным изменениям они влияют на ход физиологических процессов и др.

Для всех растительных объектов аккумуляция энергии сопровождается формированием или накоплением биомассы, которая служит структурным материалом для образования органов растений и энергетическим материалом для биосинтеза, обеспечивающего существование не только отдельного растения, но и всей сложнейшей биологической структуры.

Рост и развитие растений как органообразовательный процесс и процесс продуцирования биомассы начинаются после формирования оптико-фотосинтетической системы листа и дальнейшего осуществления реакций фотосинтеза. Это единственный процесс на Земле, в ходе которого накопление и превращение энергии простых неорганических веществ в энергию химических связей органических веществ обеспечиваются поглощением энергии естественного источника, лучистой энергии Солнца.

Наивысшая продуктивность агроэкосистемы (как и экосистемы), т. е. максимальное накопление биомассы в виде различных вегетативных и репродуктивных органов возделываемых видов растений, определяется адаптированностью оптического аппарата к солнечной энергии. Один из признаков такой адаптированности -- максимальное аккумулирование энергии, т. е. биомассы, растением за единицу времени. При условии нелимитированности других экологических факторов, обеспечивающих процесс фотосинтеза, за счет поглощенной энергии света образуется 95...97 % органических соединений, представленных растительной биомассой. При этом, разумеется, часть энергии расходуется на дыхание.

Для максимального использования поступающей энергии у экосистем эволюционно сформировался ряд адаптивных свойств (например, разнообразие видового состава). По аналогии должны создаваться и агроэкосистемы, поскольку последние имеют ту же первооснову производства биологической продукции. В этом отношении интересно вспомнить, что земледельцам народности майя удалось вывести высокоурожайные сорта кукурузы, бобовых, тыквы, а ручная техника обработки небольшого лесного участка и сочетание на одном поле посевов нескольких культур (кукурузы и фасоли) позволяли долгое время сохранять его плодородие и не требовали частой смены участков.

Создание высокопродуктивных сочетаний сельскохозяйственных культур -- один из реальных и действенных путей повышения продуктивности и эффективности затрат в агроэкосистемах. Смешанные и совместные посевы можно использовать в агроэкосистемах при высоком уровне механизации работ. Сельскохозяйственные культуры высевают чередующимися полосами или рядами, а также подсевают в междурядья зерновых. В районах с умеренным климатом используют различные комбинации культур: горох и сою с овсом и кукурузой, сою и фасоль с кукурузой, сою с пшеницей, горох с подсолнечником, рапс с кукурузой. При оптимальном подборе злаковых и бобовых компонентов существенно повышаются продуктивность посевов, выход белка, причем не только за счет зерна бобовых, но и за счет повышения содержания белка в зерне злаковых, которые используют азот, фиксируемый бобовой культурой.

Многочисленными исследованиями отечественных и зарубежных ученых конкретизированы оптические свойства почти 1500 видов растений (мезофитов, ксерофитов, гигрофитов и суккулентов травянистых, кустарниковых и древесных форм) и получена средняя спектральная кривая поглощения лучистой энергии. Согласно установленному распределению наименьшее поглощение лучистой энергии «средним» листом (до 20 %) наблюдается в диапазоне длины волн 0,75... 1,30 мкм, а наибольшее (70 % и более) --в диапазонах 0,30...0,70; 1,80...2,10 и 2,23...2,50 мкм. Энергетический баланс экосистем, меняющийся в зависимости от климатической зоны, объективно обусловливает формирование у экосистем приспособленности к «оптимальному» поглощению лучистой энергии, возможному в конкретных условиях. Адаптированность энергетического баланса экосистемы, соответствующая энергозатратам на теплообмен и транспирацию, повсеместно определяет продукционную эффективность как естественных, так и искусственных ценотических образований. Энергетические особенности различных природных зон планеты позволяют выделить 5 основных (глобальных) типов агроэкосистем.

Тропический тип характеризуется высокой обеспеченностью теплом, способствующей непрерывной вегетации. Земледелие базируется главным образом на основе функционирования агроэкосистем с преобладанием многолетних культур (ананасы, бананы, какао, кофе, многолетний хлопчатник и др.). Однолетние культуры дают несколько урожаев в год. К особенностям этого типа агросистем относится потребность в непрерывном вложении антропогенной энергии в связи с постоянным в течение года проведением полевых работ. Агроэкосистемам этого типа присуща фактически равнозначность естественного и антропогенного процессов массо- и энергообмена.

В агроэкосистемах субтропического типа интенсивность антропогенных потоков веществ и энергии меньше; проявляются дискретность и дисперсность этих потоков. В основном характерно наличие двух вегетационных периодов -- летнего и зимнего. Произрастают многолетние растения, которые имеют хорошо выраженный период покоя (виноград, грецкий орех, чай и др.). Однолетние растения летнего периода представлены кукурузой, рисом, соей, хлопчатником, зеленными и т. д.

Агроэкосистемы умеренного типа характеризуются лишь одним (летним) вегетационным периодом и продолжительным («нерабочим») периодом зимнего покоя. Очень высокая потребность во вложении антропогенной энергии приходится на весну, лето и первую половину осени.

Земледелие в агроэкосистемах полярного типа носит очаговый характер. Агроэкосистемы существенно ограничены территориально и по видам возделываемых культур (листовые овощи, ячмень, некоторые корнеплоды, ранний картофель).

Агроэкосистемы арктического типа в открытом грунте отсутствуют. Возделывание культурных растений исключено из-за очень низких температур теплого периода: в летние месяцы бывают длительные похолодания с отрицательными температурами. Возможно использование закрытого грунта.

На территории России главенствующими являются агроэкосистемы умеренного типа. При организации агроэкосистем важно обеспечить более полноценное использование лучистой энергии.

Одна из основных тенденций развития человеческого общества - непрерывное повышение уровня производства, в конечном счете - производительности труда. Это позволяло человеку в течение всей его истории постепенно увеличивать «емкость среды обитания». Однако если в этом проявляется вся мощь человеческого разума, то в заполнении увеличивающейся емкости среды Homo sapiens ведет себя как любой другой биологический вид. Эту емкость вид заполняет до уровня, на котором регуляторами снова оказываются биологические факторы. Так, по оценкам ООН на 1985 год, смерть от голода угрожала почти 500 млн. человек, или примерно 10% населения мира; в 1995 году периодически или постоянно от голода страдали около 25% людей. Голод является основным эволюционным фактором человечества.

Большой вклад в понимание опасности голода внесла работа международной неправительственной организации, так называемого «Римского клуба», созданного в 60-е годы XX века по инициативе Аурелио Печчеи. В Римском клубе был разработан ряд последовательно уточнявшихся моделей, исследование которых позволило рассмотреть некоторые сценарии возможного развития будущего Земли и судьбы человечества на ней. Результаты этих работ встревожили весь мир. Стало ясно, что путь развития цивилизации, ориентированный на постоянное увеличение производства и потребления, ведет в тупик, поскольку не согласуется с ограниченностью ресурсов на планете и возможностями биосферы перерабатывать и обезвреживать отходы промышленности. Эта угроза биосфере Земли вследствие нарушения устойчивости экосистем получила название экологического кризиса. С тех пор и в научной литературе, и в широкой печати, в средствах массовой информации постоянно обсуждаются различные проблемы, связанные с угрозой всепланетного, глобального экологического кризиса.

Хотя после выхода работ Римского клуба многие оптимисты выступали с «опровержениями» и «разоблачениями», не говоря уж о научной критике предсказаний первых глобальных моделей (и в самом деле не вполне совершенных, как и любая модель сложной системы), уже через 20 лет можно было констатировать, что реальный уровень численности населения Земли, отставания производства продовольствия от роста потребности в нем, уровень загрязнения природной среды, рост заболеваемости и многие другие показатели оказались близки к тому, что прогнозировалось этими моделями. А поскольку именно экология оказалась наукой, имеющей методологию и опыт анализа сложных природных систем, включая влияние антропогенных факторов, прогнозировавшийся глобальными моделями кризис стали называть «экологическим».

Хотя площадь суши вдвое меньше, чем площадь, занимаемая океанами, годовая первичная продукция углерода ее экосистемами более чем вдвое превышает таковую Мирового океана (52,8 млрд. тонн и 24,8 млрд. тонн соответственно). По относительной продуктивности наземные экосистемы в 7 раз превышают продуктивность экосистем океана. Из этого, в частности, следует, что надежды на то, что полное освоение биологических ресурсов океана позволит человечеству решить продовольственную проблему, не очень обоснованы. По-видимому, возможности в этой области невелики - уже сейчас уровень эксплуатации многих популяций рыб, китообразных, ластоногих близок к критическому, для многих промысловых беспозвоночных - моллюсков, ракообразных и других, в связи со значительным падением их численности в природных популяциях, стало экономически выгодным разведение их на специализированных морских фермах, развитие марикультуры. Примерно таково же и положение со съедобными водорослями, такими как ламинария (морская капуста) и фукус, а также водорослями, используемыми в промышленности для получения агар-агара и многих других ценнейших веществ (Розанов, 2001).

Развивающиеся страны и страны с переходной экономикой стремятся в первую очередь к продовольственной независимости. Они хотят производить пищу сами, а не зависеть от других стран, ибо продовольствие - это, пожалуй, самое грозное до сих пор политическое оружие и оружие давления в современном мире (пример - Россия, которая ввозит до 40 процентов продовольствия). Чтобы удвоить производство продовольствия и снять зависимость, необходимы новые технологии, знания о генах, определяющих урожайность и другие важные потребительские свойства основных сельскохозяйственных культур. Предстоит также серьезно потрудиться над адаптацией этих культур к конкретным экологическим условиям этих стран. Иными словами, приходится надеяться на трансгенные, или генно-модифицированные организмы (ГМО), выращивание которых значительно дешевле, меньше загрязняет окружающую среду и не требует привлечения новых территорий.

Мир как был несовершенен, так и остался. Первая Всемирная продовольственная конференция состоялась более 30 лет назад, в 1974 г. На ней было подсчитано, что в мире существовало 840 млн жертв хронического недоедания. Вопреки сопротивлению многих, она впервые провозгласила «неотъемлемое право человека на свободу от голода».

Итоги реализации этого права были подведены на Всемирном продовольственном форуме в Риме 22 года спустя. Он зафиксировал крах надежд мирового сообщества на обуздание голода, так как положение на фронте борьбы с этим социальным злом осталось без перемен. В связи с этим римская встреча наметила более скромные цели - снизить количество голодающих к 2015 г хотя бы до 400 млн человек.

С тех пор эта проблема еще больше обострилась. Как отмечалось в докладе генсека ООН Кофи А.Анана «Предотвращение войн и бедствий», сегодня прожиточный уровень свыше 1,5 млрд чел. - менее доллара в день, 830 млн страдают от голода. За период 1960-2000 гг. производство всех видов сельскохозяйственной продукции увеличилось с 3,8 млрд. до 7,4 млрд. т. Однако количество продовольствия, произведенного в среднем на 1 человека, осталось неизменным (1,23 т/чел). В настоящее время в мире недоедает почти половина населения, а четвертая часть голодает. В странах Западной Европы, Северной Америки и в Японии, где наибольшее распространение получила преимущественно химико-техногенная интенсификация сельского хозяйства и проживает менее 20% населения земного шара, в пересчете на каждого человека расходуется в 50 раз больше ресурсов по сравнению с развивающимися странами и выбрасывается в окружающую среду около 80% всех вредных промышленных отходов (доклад комиссии ВОЗ), что ставит на грань экологической катастрофы все человечество.

Сельское хозяйство - уникальный вид человеческой деятельности, который можно одновременно рассматривать как искусство и науку. И всегда главной целью этой деятельности оставался рост производства продукции, которое ныне достигло 5 млрд т в год. Чтобы накормить растущее население Земли, к 2025 г. этот показатель предстоит увеличить по меньшей мере на 50%. Но такого результата производители сельскохозяйственной продукции смогут достичь только в том случае, если в любой точке мира получат доступ к самым передовым методам выращивания самых высокоурожайных сортов культурных растений. Для этого им необходимо также овладеть всеми последними достижениями сельскохозяйственной биотехнологии, в частности, получения и выращивания генетически модифицированных организмов.

От каннибализма до ГМО

Для того чтобы прокормить человечество, требуется интенсификация сельского хозяйства. Однако такая интенсификация сказывается на окружающей среде и вызывает определенные социальные проблемы. Впрочем, судить о вреде или пользе современных технологий (в том числе и растениеводства) можно лишь с учетом стремительного роста населения Земли. Известно, что население Азии за 40 лет увеличилось более чем вдвое (с 1,6 до 3,5 млрд человек). Каково было бы дополнительным 2 млрд человек, если бы общество интенсивно не использовало достижения «зеленой революции»? Хотя механизация сельского хозяйства привела к уменьшению числа фермерских хозяйств и в этом смысле способствовала росту безработицы, польза от «зеленой революции», связанная с многократным ростом производства продуктов питания и устойчивым снижением цен на хлеб почти во всех странах мира, гораздо более значима для человечества.

В настоящее время наблюдается замедление роста урожайности, сокращения пашни с 0,24 га в 1950 г. до 0,12 га на человека, отчетливо начинает ощущаться дефицит и загрязнение водных ресурсов, изменения климата. В этих условиях поиск новых приемов интенсификации сельского хозяйства, в частности, широкое внедрение в практику генетически модифицированных организмов - пока единственная альтернатива традиционному ведению сельского хозяйства.

Генетически модифицированные организмы (ГМО) - это организмы, генетический аппарат которых изменен для улучшения их свойств. Иначе, генетическая инженерия - это создание новых форм организмов за счет «пересадки» генов из одной биологической системы в другую. В растениеводстве получают трансгенные растения, а в животноводстве - так называемых «гентавров». В животноводстве пока что успехи более чем скромные. Что касается растениеводства, то здесь успехи, можно сказать, огромные. Уже культивируются сотни сортов трансгенных растений, имеющих не свойственные им особенности за счет функционирования в них чужеродных генов. Это различные сорта картофеля, устойчивого к колорадскому жуку, кукурузы - устойчивой к отдельным гербицидам, клубники - более продуктивной, и многое другое.

Противники ГМО называют их «пищей Франкенштейна», «новым Чернобылем замедленного действия», забывая, что «пищу Франкенштейна» они едят каждый день, в виде хлеба, который есть продукт природной генной инженерии. А сторонники скромно напоминают, что уже через четверть века без ГМО просто невозможно будет обеспечить непрерывно растущее человечество пищей и лекарствами. Тем более, что лекарства, витамины, антибиотики - они все в большей степени, за последние более чем 60 лет, являются продуктами биотехнологий, результатами генно-инженерных разработок. Значит, их тоже нужно запрещать? Чем лекарства в этом отношении отличаются от растений, непонятно. И те, и другие служат для продления человеческой жизни, и, главное, не только количества прожитых лет, но и их качества. При этом очевидно, что генетически измененная сельскохозяйственная продукция, прежде чем попасть на поля, проходит массу жесточайших, тщательнейших испытаний.

Можно ожидать, что ГМО будут играть особую роль в новой «зеленой революции». Поток информации о ГМО позволяет предполагать, что ГМО способны помочь решению множества проблем, от обеспечения продуктами питания растущего населения Земли до сохранения биологического разнообразия на планете и уменьшения давления пестицидов на окружающую среду. Один из аргументов за использование ГМО сводится к тому, что именно «традиционное» сельскохозяйственное производство служит теперь основным источником загрязнения окружающей среды.

Решение этой проблемы может быть получено путем активного использования достижений биотехнологии, особенно в культивировании генетически модифицированных сортов зерновых, не требующих значительного применения пестицидов. Фермеры, выращивающие ГМО, используют меньше пестицидов, чем «традиционные» земледельцы. Как известно, за год на планете прибавляется около 85 млн человек, а прироста производства продовольствия хватает только на половину.

Переход к трансгенным растениям (ГМО) - это смена модели «один вредитель - один химпрепарат» парадигмой «один вредитель - один ген».

Вредители быстро адаптируются к новым условиям и приобретают устойчивость к новым поколениям инсектицидов. Например, колорадский жук приобретает достаточную устойчивость за 2 поколения.

Хороший пример влияния современных технологий на жизнь человека - создание «золотого» риса. На выведение «золотого» риса было потрачено 10 лет и 100 млн долларов. Теперь ученые из Международного исследовательского института риса расположенного в Филадельфии довольны, и с учетом того, что все это время 900 млн людей, живущих за чертой бедности (в основном в Азии, где основным продуктом питания как раз и является рис) будут продолжать страдать от голода и многочисленных болезней, сотрудники института готовы бесплатно передать новый рис любому государству, которое пожелает заняться его разведением. Кроме того, с одним модификатором, так называемым «железным» рисом, который, благодаря повышенному содержанию железа, способен помочь двум миллиардам людей, страдающих от анемии.

Производство продуктов питания на душу населения в 1998 г. превысило показатели 1961 г. на четверть и оказалось на 40% дешевле. Однако проблемы производства продовольствия и борьбы с голодом нельзя считать решенными.

Проблема голода и генные технологии - есть ли альтернатива для человечества?

«Зеленая революция»

Предшественницей биотехнологической революции, основанной на генно-хромосомных манипуляциях у растений, была зеленая революция. Она завершилась 30 лет назад и впервые дала впечатляющие результаты: почти вдвое повысилась продуктивность злаковых и бобовых растений.

Выражение «зеленая революция» употребил впервые в 1968 г. директор Агентства США по международному развитию В. Гауд, пытаясь охарактеризовать прорыв, достигнутый в производстве продовольствия на планете за счет широкого распространения новых высокопродуктивных и низкорослых сортов пшеницы и риса в странах Азии, страдавших от нехватки продовольствия. Многие журналисты тогда стремились описать «зеленую революцию» как массовый перенос передовых технологий, разработанных в наиболее развитых и получавших стабильно высокие урожаи агросистемах, на поля крестьян в странах «третьего мира». Она ознаменовала собой начало новой эры развития сельского хозяйства на планете, эры, в которую сельскохозяйственная наука смогла предложить ряд усовершенствованных технологий в соответствии со специфическими условиями, характерными для фермерских хозяйств в развивающихся странах. Это потребовало внесения больших доз минеральных удобрений и мелиорантов, использования полного набора пестицидов и средств механизации, в результате произошел экспоненциальный рост затрат исчерпаемых ресурсов на каждую дополнительную единицу урожая, в том числе пищевую калорию.

Это было достигнуто благодаря переносу в создаваемые сорта целевых генов, чтобы увеличить прочность стебля путем его укорочения, добиться нейтральности к световому периоду для расширения ареала возделывания и эффективной утилизации минеральных веществ, особенно азотных удобрений. Перенос избранных генов, хотя и в пределах видов, с использованием традиционных методов гибридизации, можно рассматривать как прообраз трансгеноза.

Идеолог «зеленой революции» Норман Борлауг, получивший за ее результаты в 1970 г. Нобелевскую премию, предупреждал, что повышение урожайности традиционными методами может обеспечить продовольствием 6-7 млрд. человек. Сохранение демографического роста требует новых технологий в создании высокопродуктивных сортов растений, пород животных и штаммов микроорганизмов. В обращении к форуму по генной инженерии, проходившем в марте 2000 г. в Бангкоке (Таиланд), Борлауг заявил, что «либо уже разработаны, либо мы находимся на завершающихстадиях разработки технологий, которые позволят прокормить население численностью более 10 млрд. человек».

Работа, начатая Н. Борлаугом и его коллегами в Мексике в 1944 г.,продемонстрировала исклю чительно высокую эффективность целенаправленной селекции по созданию высокоурожайных сортов сельскохозяйственных растений. Уже к концу 60-х годов широкое распространение новых сортов пшеницы и риса позволило многим странам мира (Мексике, Индии, Пакистану, Турции, Бангладеш, Филиппинам и др.) в 2-3 и более раз увеличить урожайность этих важнейших культур. Однако вскоре обнаружились и негативные стороны «зеленой революции», вызванные тем, что она была в основном технологической, а не биологической. Замена генетически разнообразных местных сортов новыми высокоурожайными сортами и гибридами с высокой степенью ядерной и цитоплазматической однородности значительно усилила биологическую уязвимость агроценозов, что было неизбежным результатом обеднения видового состава и генетического разнообразия агроэкосистем. Массовому распространению вредных видов, как правило, способствовали и высокие дозы азотных удобрений, орошение, загущение посевов, переход к монокультуре, минимальным и нулевым системам обработки почвы и тд.

Сопоставление «зеленой революции» с происходящей ныне биотехнологической проведено для того, чтобы показать ту социально значимую компоненту, которая лежит в основе всех генно-хромосомных манипуляций. Речь идет о том, как обеспечить население Земли продовольствием, создать более эффективную медицину, оптимизировать экологические условия.

Современные сорта позволяют повысить среднюю урожайность за счет более эффективных способов выращивания растений и ухода за ними, за счет их большей устойчивости к насекомым-вредителям и основным болезням. Однако они лишь тогда позволяют получить заметно больший урожай, когда им обеспечен надлежащий уход, выполнение агротехнических приемов в соответствии с календарем и стадией развития растений (внесение удобрений, полив, контроль влажности почвы и борьба с насекомыми-вредителями). Все эти процедуры остаются абсолютно необходимыми и для полученных в последние годы трансгенных сортов.

Более того, радикальные изменения в уходе за растениями, повышение культуры растениеводства становятся просто необходимыми, если фермеры приступают к возделыванию современных высокоурожайных сортов. Скажем, внесение удобрений и регулярный полив, столь необходимые для получения высоких урожаев, одновременно создают благоприятные условия для развития сорняков, насекомых-вредителей и ряда распространенных заболеваний растений. При внедрении новых сортов необходимы дополнительные меры по борьбе с сорняками, вредителями и болезнями, усиливается зависимость продуктивности агроэкосистем от техногенных факторов, ускоряются процессы и возрастают масштабы загрязнения и разрушения окружающей среды.

Несмотря на значительные успехи «зеленой революции», битва за продовольственную безопасность для сотен миллионов людей в наиболее бедных странах далека от завершения.

Исчерпанность возможностей зеленой революции

Стремительный рост населения «третьего мира» в целом, еще более разительные перемены демографических распределений в отдельных регионах, неэффективные программы борьбы с голодом и бедностью во многих странах «съели» большую часть достижений на ниве производства продовольствия. Скажем, в странах Юго-Восточной Азии производство продуктов питания все еще явно недостаточно, чтобы победить голод и бедность, в то время как Китай совершил колоссальный скачок. Успехи Китая в борьбе с голодом и бедностью (в частности, по сравнению с Индией) относят к тому, что руководство Китая выделяет огромные средства на образование, здравоохранение и на науку. При более здоровом и лучше образованном сельском населении китайская экономика на протяжении последних 20 лет оказалась в состоянии развиваться вдвое быстрее индийской. Сегодня средний доход на душу населения в Китае почти вдвое выше, чем в Индии.

В общем, мировому сообществу и без генетически модифицированных организмов удалось добиться сдвигов в борьбе с голодом. С 1950 по 1990 годы производство зерновых, а также говядины и баранины выросло почти в три раза (соответственно с 631 до 1780 млн т и с 24 до 62 млн т), производство рыбопродуктов - почти в 4,5 раза (с 19 до 85 млн т). Несмотря на более чем двукратный рост обитателей Земли за тот же период, это позволило повысить с 1961 по 1994 год мировое производство продовольствия на душу населения на 20% и несколько поднять уровень питания в развивающихся странах.

Тем не менее, «зеленая революция» не внесла особых изменений в количественные и качественные параметры питания в бедных странах. Душевое потребление зерновых в прямом и косвенном виде колеблется в современном мире от 200 до 900 кг в год. В отличие от населения развитых стран, которое потребляет урожай зерновых главным образом в виде мяса, молока и яиц, народы третьего мира довольствуются скудной диетой. В 1995 г. среднестатистический американец съедал 45 кг говядины, 31 кг свинины, 46 кг домашней птицы и 288 л молока, а в годовой рацион среднего жителя Индии входил лишь 1 кг говядины (следует учесть, что индуисты ее не едят), 0,4 кг свинины, 1 кг домашней птицы и 34 л молока.

В настоящее время численность популяции Homo sapiens в 6 млрд человек является наибольшей во всех высокопродуктивных биотопах Земли.

Человек использует около 7% из 180 млрд т продуктов фотосинтеза - органического вещества биосферы. Если для удвоения численности с 1 до 2 млрд человек потребовалось 80 лет (за период с 1850 по 1930 год), то в настоящее время - 40 лет. На 20% населения «процветающих» стран приходится 77% загрязнителей, выбрасываемых в биосферу.

Случилось так, что рациональные решения выносились экспертами, убежденными, что они работают во имя разума и прогресса, и не принимавшими в расчет протесты местного населения, считая их необоснованными суевериями. Такой подход часто приводит к пагубным результатам, которые уравновешивают и даже превосходят по своим последствиям их благотворные результаты. Так, «зеленая революция», осуществленная в целях стимулирования развития стран третьего мира, в значительной степени приумножила их продовольственные ресурсы и во многом позволила избежать неурожаев. Тем не менее, теперь понятно, что стартовая идея, которая состояла в том, чтобы отбирать и размножать на очень обширных площадях единственный селекционный сорт (количественно самый продуктивный) оказалась опасной по своим последствиям. Отсутствие генетического разнообразия давало возможность патогенному фактору, сопротивление которому не мог оказать этот сорт, уничтожать весь сезонный урожай. Стала очевидной необходимость восстановления определенного генетического разнообразия для того, чтобы оптимизировать, а не пытаться все более и более максимизировать урожайность.

Интенсивная технология приводит к деградации почв; ирригация, которая не учитывает особенности почвы, вызывает их эрозию; накопление пестицидов разрушает баланс и системы регуляций между видами - уничтожая полезные виды наряду с вредными, иногда стимулируя безудержное размножение вредного вида, который получил устойчивость к пестицидам; токсичные вещества, содержащиеся в пестицидах, переходят в продукты питания и ухудшают здоровье потребителей и т.д.

Дефицит плодородных почв

В последние годы обострилась проблема дефицита плодородных почв. Если сравнить мировую продукцию растениеводства в 1950 и 1998 г., то при урожайности 1950 г. для обеспечения такого роста пришлось бы засеять не 600 млн га, как ныне, а втрое больше. Между тем дополнительные 1,2 млрд га уже, по сути, взять негде, особенно в странах Азии, где плотность населения чрезвычайно высока. Кроме того, земли, вовлеченные в сельскохозяйственный оборот, с каждым годом становятся все более истощенными и экологически уязвимыми.

Из стран-экспортеров лишь США и Россия могут расширить посевы зерновых. Ни Австралия, ни Аргентина, ни Канада, ни страны ЕС резервов не имеют - там все распахано. В США, как и в России, также есть угодья, выведенные из оборота, так что, задействовав их, американцы могут получить еще 100 млн т в год. Это внушительный резерв экспорта, ибо свои потребности США с лихвой удовлетворяют на нынешних площадях. Но что США поставляют на мировой рынок? В основном кукурузу и сою - пшеницу они почти не экспортируют. Россия же, при использовании современных технологий, потенциально может экспортировать больше 100 млн т.

Влияние эрозии почв, сведения лесов и лугов на биоразнообразие все ощутимее; усиливается зависимость продуктивности агроэкосистем от техногенных факторов. С неудачами стран «третьего мирав и международных организаций, содействующих их развитию, в попытках добиться адекватной отдачи от вложений в сельское хозяйство смириться нелегко, поскольку на протяжении всей истории ни одной нации не удавалось повысить благосостояние и добиться развития экономики без предварительного резкого увеличения производства продуктов питания, главным источником которых всегда оставалось сельское хозяйство. Поэтому, как считают многие специалисты, в XXI в. предстоит вторая «зеленая революция». Без этого не удастся обеспечить человеческое существование всем, кто приходит в этот мир.

Очевидно, что потребуются немалые усилия, как традиционной селекции, так и современной сельскохозяйственной ДНК-технологии, для того чтобы добиться генетического совершенствования продовольственных растений в темпе, который позволил бы к 2025 г. удовлетворить потребности 8,3 млрд человек. Для дальнейшего роста производства сельскохозяйственной продукции понадобится много удобрений, особенно в странах Экваториальной Африки, где до сих пор удобрения вносят не более 10 кг на гектар (в десятки раз меньше, чем в развитых странах и даже в развивающихся странах Азии).

По оценкам специалистов, изучающих азотные циклы в природе, не менее 40% из 6 млрд человек, населяющих ныне планету, живы лишь благодаря открытию синтеза аммиака. Внести такое количество азота в почву с помощью органических удобрений было бы совершенно немыслимо, даже если бы все мы только этим и занимались.

«Зеленая революция» создала предпосылки для решения продовольственной проблемы, но не превратила обещание победить голод к XXI веку в действительность. Засуха в США и Канаде в 1989 г. сожгла почти треть урожая и напомнила миру о неустойчивости земледелия в условиях глобального потепления. В 90-е годы XX века темпы производства зерна замедлились, а в ряде регионов - снизились по сравнению с 80-ми.

Если принять индекс мирового производства продовольствия в 1979-1981 гг. за 100, то динамика его движения в 1993-1995 гг. приобрела отрицательное значение и составила в Африке - 95,9, в Северной и Центральной Америке - 95,4, в Европе - 99,4. Это поставило под угрозу достижения «зеленой революции» и потребовало создание принципиально новых методов для выведения новых сортов.

Положение в сельском хозяйстве осложнилось в связи со снижением плодородия и сокращением пахотных земель. По данным исследования, проведенного в 1991 г., потери верхнего слоя земли вследствие ее деградации в различных регионах мира в 16-300 раз превышали способность почвы к естественному восстановлению. По оценкам другого исследования, деградация земли с 1945 по 1990 год привела к снижению производства продовольствия в мире на 17%. Попытки компенсировать эти потери за счет ирригации и химизации дали определенный эффект, но разрушающе воздействовали на окружающую среду.

В сельском хозяйстве происходит ежегодный вынос с урожаем значительных количеств биогенных элементов, почва постепенно обедняется ими, истощается. Внесение минеральных удобрений компенсирует эти потери и позволяет получать относительно устойчивые высокие урожаи. Вместе с тем, не будучи связаны в гумусе, минеральные соли легко вымываются почвенными водами, постепенно стекают в водоемы и реки, уходят в подземные водоносные горизонты. В самой почве избыток минеральных солей изменяет состав почвенных животных и микроорганизмов, создающих гумус, его становится все меньше, и почва, теряя естественное плодородие, становится чем-то вроде мертвого пористого материала для пропитки минеральными солями. А промышленные удобрения всегда содержат примеси тяжелых металлов, которые склонны накапливаться в почве.

Процесс разрушения почвы значительно ускоряется применением ядохимикатов, убивающих вместе с вредителями почвенных насекомых, червей, клещей, без которых образование гумуса сильно тормозится.

Постепенно продукция с таких полей становится все более загрязненной нитратами и нитритами от избытка удобрений, пестицидами и тяжелыми металлами. Такая интенсификация земледелия дает, конечно, кратковременные положительные результаты, но все более обостряет проблему потери почвенного плодородия и сокращения земельных ресурсов.

Дальнейшее расширение посевных площадей приведет к катастрофическому ускорению исчезновения видов. Биологические методы поддержания плодородия почв - органические удобрения, смена и оптимальное сочетание культур, переход от химической защиты растений к биологической, строго соответствующие местным особенностям почв и климата способы обработки почв (например, безотвальная пахота) - необходимые условия сохранения и повышения плодородия почв и стабилизации производства продовольствия достаточно высокого качества и безопасного для здоровья людей.

Поиски выхода с использованием генетически модифицированных организмов

Широко известны медицинские проблемы, связанные с действием возбудителей болезней растений, в частности, грибов, на организм человека. Так, продукты жизнедеятельности грибка аспергилла - афлатоксины - являются опасными канцерогенами. Сегодня этим неистребимым грибком заражены посевы зерновых по всему миру - 20-25% площадей в зависимости от культуры и региона. И эти афлатоксины мы, не ведая об этом, потребляем, например, с хлебом. ПМО-сорта с устойчивостью к грибковым заболеваниям не несут никаких токсических нагрузок.

Учитывая возрастающий интерес фермеров и других производителей к биотехнологической продукции, увеличение посевных площадей под ГМО-культурами, в рамках государственных инициатив предусмотрено углубление научных исследований по оценке риска биотехнологической продукции. Ученые, как правило, высказываются за принцип «осторожного отношения». Восприятие риска, оценка риска несомненно зависят от уровня культуры нации. Например, даже «зеленые», активно протестуя против использования ГМ растений в сельском хозяйстве, как правило, даже не упоминают об использовании ГМО в медицине и фармакологии. Те же «Друзья Земли» признают безопасность устойчивых к гербицидам растений.

Никому не приходит в голову протестовать против генно-инженерного (человеческого) инсулина, которому диабетики в своей массе отдают предпочтение перед отечественным «свиным».

Во многих странах мира уже широко применяются в растениеводстве так называемые трансгенные (точнее другой термин - генетически модифицированные) растения - соя, кукуруза, хлопок, рапс, картофель и многие другие, устойчивые к определенным пестицидам или насекомым. В 1995 году в США зарегистрирован модифицированный сорт картофеля «NewLeaf», устойчивый к колорадскому жуку (компания «Монсанто»). Уже в последующие два года модифицированный сорт картофеля зарегистрировали у себя Канада, Япония, Мексика. Многие страны Европы, Южной Америки, Австралия проводят сегодня испытания модифицированных сортов растений.

Позитивные стороны модификации растений очевидны. Это - упрощение технологий выращивания сельскохозяйственных культур, существенное снижение энергозатрат. А, главное - уменьшение загрязнения окружающей среды пестицидами. Кроме того, ГМ растения дают значительное повышение урожайности за счет снижения вредных воздействий насекомых и микроорганизмов, снижение себестоимости, а отсюда и цен на продукты питания.

Надежды, которые возлагаются на генетически модифицированные (ГМ) растения, можно подразделить на два основных направления:

1. Усовершенствование качественных характеристик продукции растениеводства.

2. Увеличение продуктивности и стабильности растениеводства путем повышения резистентности растений к неблагоприятным факторам.

Создание генетически модифицированных растений чаще всего выполняется для решения следующих конкретных задач.

1) В целях увеличения урожайности путем повышения:

а) резистентности к патогенам;

б) резистентности к гербицидам;

в) устойчивости к температурам, различному качеству почв;

г) улучшения характеристик продуктивности (вкусовых качеств, облегчение усвояемости).

2) В фармакологических целях:

а) получение продуцентов терапевтических агентов;

б) продуцентов антигенов, обеспечения пищевой «пассивной» иммунизации.

Основные задачи ДНК-технологии в создании ГМ растений в современны" условиях развития сельского хозяйства и общества довольно многообразны и заключаются в следующем:

1. Получение гибридов (совместимость, мужская стерильность).

2. Рост и развитие растений (изменение габитуса растений - например, высоты, формы листьев и корневой системы и др.; изменение в цветении - например, строении и окраске цветков, времени зацветания).

3. Питание растений (фиксация атмосферного азота небобовыми растениями; улучшение поглощения элементов минерального питания; повышение эффективности фотосинтеза).

4. Качество продукции (изменение состава и/или количества сахаров и крахмала; изменение состава и/или количества жиров; изменение вкуса и запаха пищевых продуктов; получение новых видов лекарственного сырья; изменение свойств волокна для текстильного сырья; изменение качества и сроков созревания или хранения плодов).

5. Устойчивость к абиотическим факторам стресса (устойчивость к засухе и засолению, жароустойчивость; устойчивость к затоплению; адаптация к холоду; устойчивость к гербицидам; устойчивость к кислотности почв и алюминию; устойчивость к тяжелым металлам).

6. Устойчивость к биотическим факторам стресса (устойчивость к вредителям; устойчивость к бактериальным, вирусным и грибным болезням).

На практике среди признаков, контролируемых перенесенными генами, на первом месте стоит устойчивость к гербицидам. Доля устойчивых к вирусным, бактериальным или грибным болезням среди промышленно выращиваемых трансгенных растений - менее 1%.

Среди генов, определяющих устойчивость к гербицидам, уже клонированы гены устойчивости к таким гербицидам как глифосат (Раундап), фосфимотрицин (Биалафос), глифосимат аммония (Баста), сульфонилмочевинным и имидозолиновым препаратам. С использованием этих генов уже получены трансгенные соя, кукуруза, хлопчатник и тд. В России также проходят испытания трансгенные культуры, устойчивые к гербицидам. В Центре «Биоинженерия» создан сорт картофеля, устойчивый к Басте, проходящий в настоящее время полевые испытания.

Необходимость создания ГМО в современном мире связана с тем, что многие сорта характеризуются недостаточной приспособленностью к местным особенностям почвенно-климатических и погодных условий, технологиям возделывания (сортовой агротехнике) и требованиям рынка, нарушение принципов агроэкологического макро-, мезо- и микрорайонирования сельскохозяйственной территории. Односторонняя ориентация на «техногенную» интенсивность сортов и гибридов, способных обеспечить рост урожайности лишь при всевозрастающих затратах исчерпаемых ресурсов (минеральных удобрений, мелиорантов, пестицидов, орошений и пр.), неизбежно приводит к снижению коэффициентов ресурсной и энергетической эффективности, непропорциональному росту затрат невосполнимых ресурсов, загрязнению и разрушению природной среды.

Существенным направлением в получении ГМ растений являются попытки создать биотопливо. Проблема создания биотоплива возникла достаточно давно. Об этом мечтал еще Генри Форд. Будущий бензин можно будет извлекать из генетически модифицированных сои или кукурузы. Т.е. будут растения-фабрики по производству заданных веществ (например, упомянутого растительного масла, которое в недалеком будущем с успехом заменит нефть в качестве топлива). В результате резко сократятся посевные площади и воздействие добываемого топлива на окружающую среду. Переход к топливным плантациям должен начаться с биодизельных топлив - их молекулярная структура настолько близка к структуре некоторых растительных масел, что на первых порах можно будет обойтись и без генной инженерии.

Необходимо подчеркнуть, что с помощью генетической инженерии новые сорта не создают, а только улучшают их, делают более адаптированными к конкретным условиям разведения и задачам. То есть исходный сорт должен быть уже адаптирован к определенным условиям внешней среды, а также технологиям возделывания. Поэтому в комплексных селекционно-агротехнических программах должны быть изначально определены цели и этапы использования классических и биоинженерных методов управления наследственной изменчивостью при реализации той или иной морфофизиологической модели сорта (гибрида). Обычно районированные сорта, используемые для генно-инженерной работы, характеризуются идеальной агроэкологической «подогнанностью» его генома и цитоплазмы (плазмона) к конкретным условиям.

В принципе трансгенные растения должны заметно увеличить разнообразие сельскохозяйственных культур. Например, до сих пор селекция кукурузы в США основана на небольшом числе культивируемых сортов, и в результате применяемый генофонд довольно беден. Семена сортов, находящихся в семенных банках, практически не используются; для скрещивания применяют несколько высокоурожайных сортов. А если у нас есть гены, ответственные за необходимые свойства, то, вводя их в эти сорта, мы увеличим биоразнообразие используемых сортов.

Гпавная проблема природной генетической инженерии - ее медлительность

Генетической инженерией занимается и сама природа. За последние тысячелетия (с помощью искусственного отбора) она добилась немалого. Так, в частности, полагают, что вследствие генных мутаций и природной генной инженерии природа поставила на стол человеку массу новых продуктов, начиная от мягкой пшеницы (слияние трех геномов) и кончая кукурузой. Но как нормальному селекционеру спрессовать миллионы лет того, что делала природа, в десятилетия и даже годы? Как максимально сократить сроки? Способна ли справиться со всем этим генетика и селекция? Адаптивная система селекции растений, базирующаяся на мобилизации генофонда, управлении наследственностью, сортоиспытании и семеноводстве, обеспечивает повышение величины и качества урожая сельскохозяйственных культур на большей части земледельческой территории Земли. При этом именно селекционеры растений играют роль стратегов в улучшении сельскохозяйственных культур и обеспечении продовольственной безопасности, осваивая новые, в том числе и трансгенные, технологии. Поэтому ближайшая проблема в области селекции состоит в том, чтобы интегрировать и скооперировать усилия селекционеров и молекулярных биологов для решения общей задачи - повышения величины и качества урожая, ресурсо- и энергоэкономичности, экологической надежности, безопасности и рентабельности растениеводства.

Гибридизация, хотя до сих пор не вполне понятны ее молекулярные механизмы, играет важную роль в повышении эффективности сельского хозяйства. Так, при перекрестном опылении кукурузы образуются более сильные и урожайные гибриды. В компании «Plant Genetic System» в Генте такие гибриды получены не только для кукурузы, но и для рапса. Китай еще раз показал свои возможности, лежащие, по-видимому, в основе его тысячелетней устойчивости: независимо от политической системы в стране, он полностью обеспечил свою продовольственную безопасность.

Например, именно в Китае достигнуты большие успехи в селекции риса. Это прежде всего высокоурожайные гибриды на основе традиционных местных сортов, дающие 10-11 т/га вместо обычных 2,5-3. Фермеры довольны этими сортами, и сейчас их выращивают на огромных площадях в Китае, Вьетнаме и других странах Юго-Восточной Азии. Если бы все эти площади засевали одним сортом, то в скором времени он оказался бы очень восприимчивым к различным заболеваниям. Гибрид, полученный из различных ГМ сортов, стал важной вехой на пути к стабильно высоким урожаям риса, обеспечивающего продовольственную безопасность и благополучие половины населения Земли. В каждом районе, где выращивают свой сорт, не мешало бы использовать ГМ сорта и гибриды на их основе для получения широкого спектра высокоурожайных местных адаптированных сортов.

Анализ роста урожайности в XX веке показывает, что наряду с минеральными удобрениями, пестицидами и средствами механизации основную роль в этом процессе сыграло генетическое улучшение растений.

Так, вклад селекции в повышение урожайности важнейших сельскохозяйственных культур за последние 30 лет оценивают в 40-80%. Именно благодаря селекции на протяжении последних 50 лет, например в США, была обеспечена ежегодная прибавка урожая в размере 1-2% по основным полевым культурам. Имеются все основания считать, что в обозримом будущем роль биологической составляющей, и в первую очередь селекционного улучшения сортов и гибридов, в повышении величины и качества урожая будет непрерывно возрастать.

Однако для того, чтобы накормить мир, даже такие цифры сегодня малы. Селекционное конструирование нового сорта - трудный научный процесс. Это дело требует от селекционеров чудовищного упорства, десятков лет труда, а успех к ним чаще всего приходит только на склоне лет. Сколько селекционеров так и не дожили до времени, когда их усилия стали приносить плоды, а многие вообще остались без сортов. А проблема голода по-прежнему является главной для многих стран. Время не ждет, речь идет о миллионах живых людей, им требуется помочь.

Сложность путей создания сортов становится наглядной, если, например, учесть перечень требований к новому сорту пшеницы по классическому подсчету Николая Ивановича Вавилова. В число признаков, которым должен соответствовать новый сорт, входит сорок шесть пунктов.

Перечислим некоторые из них: форма зерна; высокий вес 1000 семян; крупный, при созревании не осыпающийся колос; не прорастающее на корню и в снопах зерно; прочная, неполегающая соломина; оптимальное соотношение массы зерна и соломины; иммунитет к вредителям, болезням; устойчивость к засухам; пригодность к механизированной уборке и т.д. и т.п.

И это по меркам прошедших десятилетий. Ныне же количество требований выросло еще больше. Чем больше признаков селекционер стремится объединить в одном сорте или гибриде, тем ниже темпы искусственного отбора, тем больше времени требуется для создания нового сорта.

Наличие отрицательных генетических и биоэнергетических по своей природе корреляций между признаками существенно снижает темпы создания новых сортов. Кроме этого, как считает Жученко (2001), повышение эффективности современного селекционного процесса предполагает контроль целого комплекса популяционно-генетических характеристик. К числу важнейших из них следует отнести: подбор пар для скрещивания с учетом их рекомбинационного потенциала, выбор направления скрещивания и условий получения гибридов F1 с учетом разной способности макро- и микроспор к переносу хромосомных аберраций, а также элиминации рекомбинантных гамет в процессе селективного избирательного оплодотворения; выбор фона для выращивания гибридов с учетом влияния факторов внешней среды на уровень и спектр ре комбинационной изменчивости на этапах предмейоза, мейоза и постмейоза; использование эффективных селективных сред для отбора рекомбинантных генотипов на клеточном уровне (In vitro), а также перемещающихся генетических элементов; переноса чужеродной ДНК путем трансгеноза; снижения селективной элиминации рекомбинантных гамет и зигот, и все же прежде всего требует особого международного внимания ряд экологических проблем, таких как засоление почв, вызванное плохо спроектированными и обслуживаемыми ирригационными системами, а также загрязнение почв и поверхностных водоемов, обусловленное в значительной мере избыточным использованием удобрений и химических средств защиты.

В то же время, геном растений имеет большой потенциал в отношении их совершенствования по разным признакам, в том числе и для роста урожайности. Это важный аспект, не принимаемый в расчет «зелеными». Они полагают, что продуктивность сельского хозяйства развивающихся стран и стран с переходной экономикой зависит от социальных и экономических условий, с чем трудно не согласиться, но не учитывают, что сегодня для повышения производительности этого уже недостаточно и нужны новые технологии, необходимые для реализации скрытого в сельскохозяйственных видах генетического потенциала. Лишь они позволят приблизиться к устойчивому сельскому хозяйству, устойчиво функционирующей промышленности и ответственно, к преодолению экологического кризиса.

Почти все наши традиционные продукты питания представляют собой результат естественных мутаций и генетической трансформации, которые служат движущими силами эволюции. Не будь этих основополагающих процессов, возможно, мы все еще оставались бы в донных осадках первобытного океана. К счастью, время от времени мать-природа брала на себя ответственность и совершала генетические модификации. Так, пшеница, которой принадлежит столь значительная роль в нашем современном рационе, приобрела свои нынешние качества в результате необычных (но вполне естественных) скрещиваний между различными видами трав. Сегодняшний пшеничный хлеб - результат гибридизации трех различных растительных геномов, каждый из которых содержит набор семи хромосом. В этом смысле пшеничный хлеб следовало бы отнести к трансгенным, или генетически модифицированным, продуктам. Еще один результат трансгенной гибридизации - современная кукуруза, появившаяся, скорее всего, благодаря скрещиванию видов Teosinte и Tripsacum.

Перспективы решения проблемы голода с использованием традиционных подходов селекции не внушают надежд. К 2015 г. около 2 млрд человек будут жить в бедности. Растениеводы давно пытались решить эту проблему, издавна занимаясь выведением новых, высокопродуктивных сортов, традиционными путями при помощи скрещивания и отбора, то есть путями естественными, главные недостатки которых - ненадежность и малая вероятность получения селекционером того, что он запланировал, и слишком большие временные затраты.

Недостатки традиционной селекции и современные пути их преодоления

Обычно для получения новых сортов и пород животных используют гибридизацию и методы радиационного и химического мутагенеза. Среди проблем, ограничивающих возможности традиционной селекции, можно выделить следующие: желательные гены передаются вместе с нежелательными; приобретение одного желательного гена сопровождается часто потерей другого; некоторые гены остаются связанными друг с другом, что значительно затрудняет отделение положительных свойств от вредных.

Методы радиационного и химического мутагенеза, применяемые в ежедневной практике селекционера, ведут к появлению огромного количества неизвестных генетических перестроек. Выведенное в результате таких воздействий растение в случае, если оно жизнеспособно и не имеет выраженных токсических свойств, может нести невыявленные мутации, поскольку мутантные сорта исследуются лишь с целью изучения характеристик, имеющих отношение к решению конкретной селекционной задачи.

Главные достоинства методов генетической инженерии заключаются в том, что они позволяют передавать один или несколько генов от одного организма другому без сложных скрещиваний, причем донор и реципиент не обязательно должны быть близкородственными. Это резко увеличивает разнообразие изменяемых свойств, ускоряет процесс получения организмов с заданными свойствами, а также, что очень важно, облегчает прослеживание генетических изменений и их последствий. А самое главное, измененный сорт или порода сразу адаптирован - вписан в конкретные условия окружающей среды.

Представить завтрашний день сельского хозяйства трудно, но с большой определенностью можно говорить о стратегических задачах, которые хотелось бы решить. Тут надо понимать, что цели природы и человека различны. Для людей, скажем, выгоднее получить пшеницу или ячмень с крупным зерном, с легкой обмолачиваемо с тью. Природе же важнее не размер, а количество зерен; а вот склонность к легкому обмолачиванию - этот признак может оказаться для растения даже вредным.

Такой разнобой во взглядах природы и человека, могущество которого все возрастает, не может не сказаться губительно на биосфере. Из огромного разнообразия растений, кормивших человека 10 тысяч лет назад, сегодня основу питания (85%) составляет всего пять видов растений. А из 5 тыс. окультуренных видов растений человек в настоящее время для удовлетворения 90% своих потребностей в продовольствии использует лишь 20, из которых 14 принадлежит всего лишь к двум семействам.

Чтобы понять, как далеко зашли эволюционные изменения под влиянием селекционной работы человека, достаточно взглянуть на кукурузные початки (их возраст - 5 тыс. лет), найденные при раскопках в пещере Теуакан (Мексика). Они примерно в 10 раз меньше, чем у современных сортов. И это реальный пример работы генетиков и селекционеров.

Г.Д. Карпеченко (1927) впервые синтезировал новую неизвестную в природе видовую форму Raphanobrassica (рафанобрассика), константный полиплоидный межродовой гибрид между редькой и капустой. Совершенно справедливо Н.Н. Воронцов (1999) называет синтез рафанобрассики первым случаем конструирования нового генома, того, что в конце 70-х стало называться генетической инженерией.

Через три года шведский генетик Арне Мюнтцинг впервые осуществил ресинтез дикорастущего в природе аллополиплоидного вида багульника.

Природная хромосомная инженерия создает гибридогенные полиплоидные комплексы видов, открытые и изученные американским ботаником Ледьярдом Стеббинсом. В этих комплексах геномы нескольких диплоидных исходных видов могут вступать между собой во всевозможные гибридные аллотетраплоидные комбинации. Объединяться могут сразу несколько геномов, так что предком одного вида может ни один, а несколько видов, как, например, у обычной мягкой пшеницы, у видов хлопчатника.

Гибридогенное видообразование встречается и у позвоночных и беспозвоночных животных. Но животные размножаются половым путем, который у межвидовых гибридов затруднен или даже невозможен. Поэтому межвидовые гибриды животных размножаются необычными способами, которые мы могли бы назвать репродуктивными технологиями. К ним относятся: партеногенез (спермии не нужны для развития яйцеклеток видов-гибридов); гиногенез (спермии нужны лишь для активации развития, но развитие происходит на основе женских гамет и наследование матроклинно); и собственно гибридогенез, когда гибридный вид образуется на основе гибридных оплодотворенных яйцеклеток, но один из родительских геномов избирательно устраняется.

Благодаря, в частности, селекционной работе, древнее природное разнообразие местных видов заменено ныне небольшим числом специально выведенных и почти насильно внедряемых сортов, выращиваемых на обширнейших пространствах. 96% урожая гороха в США получается всего-навсего от двух его разновидностей, а 71% урожая кукурузы - от шести ее сортов. Великолепные по продуктивности растения используют, но они, к сожалению, становятся все более подверженными различным заболеваниям, таким, к примеру, как картофельная гниль. Растения приходится усиленно «лечить» пестицидами и прочими опасными для окружающей среды и самого человека средствами. Одна из важнейших целей ДНК-технологии - не менять среду под растения, а наоборот - менять растение таким образом, чтобы оно было наиболее адаптивным к этой среде. Кроме того, необходим возврат растительного царства к многообразию, к неоглядному богатству видов. Очевидно, однако, что при этом главным остается обеспечение доступа к продовольствию всех социальных групп населения («здоровье нации»), поскольку на покупку продовольствия расходуется до 70% доходов населения

Селекционеры, наблюдая за работой биоинженеров, испытывают чувство зависти от простоты и ясности экспериментов. Хотя многие из них считают, что генетическая инженерия - это своего рода увлечение, мода, что она пройдет, и никакой особой пользы практика от нее не получат.

Медлительные, терпеливые, упорные, свято соблюдающие правила, издавна декретированные природой, деревенского, так сказать, склада селекционеры подозрительно относятся к поспешным, явно урбанистическим методам биоинженерии. Их раздражают рвение, спешка, рекламный шум, чрезмерные обещания, явное желание нарушить ритуалы, поскорее опрокинуть поставленные природой барьеры, обойти их, пролезть с «черного хода», зайти «вне очереди». Этот старый спор между сельской неторопливостью, основательностью и городской суетой и необязательностью, видимо, разрешится не скоро, потому что биоинженер, в конечном итоге, передает свои находки селекционерам, именно они должны судить, удался или нет очередной генный «фокус».

Каких бы чудес ни напридумывали молекулярные биологи, рассуждают селекционеры, нам решать, что у них получилось. Потому-то скоростные методы переделки сельского хозяйства - это миф. Для получения у данного растения нужных признаков требуется от пяти до пятнадцати лет. А потом еще, по крайней мере, от трех до восьми лет работы традиционными методами, чтобы закрепить эти признаки у растения, а потом его районирование и тд. Но следует признать, что биоинженерия в отличие от традиционных методов селекции обладает наибольшей возможностью технологизировать достижения фундаментальных знаний, и, в частности, молекулярной биологии. Кроме того, методы биотехнологии являются качественно новым инструментом для непосредственного изучения структурно-функциональной организации генетического материала. А это, в свою очередь, позволяет предположить, что генетическая инженерия растений окажет наибольшее влияние при селекции на такие адаптивно и хозяйственно ценные признаки, как интенсивность чистого фотосинтеза, индекс урожая и др. Наиболее перспективные направления в области защиты растений включают получение трансгенных сортов, устойчивых к гербицидам и вредным видам, биопестицидов, новых форм микроорганизмов и др. Очевидно также, что сама генетическая инженерия, став экспериментальным полигоном эволюции, будет непрерывно совершенствоваться и усложняться, расширяя возможности человека в целенаправленном преобразовании организмов, и вполне вероятно, что дальнейшее развитие методов молекулярной биологии, в том числе трансгеноза, позволит поднять современную селекцию растений на качественно новый уровень.

Хотя для генетической инженерии существует масса трудностей, например, в том, что селекция новых сортов затрагивает свойства растения, контролируемые не одним, а сразу многими генами. Например, ученые хотят сконструировать растения, способные сами себя «удобрять».

Настойчиво пропагандируется мысль передать зерновым культурам - основной пище человечества - группы генов nrf из бактерий, умеющих улавливать атмосферный азот, и тем самым избавиться от необходимости вносить в почву азотные удобрения. И это будет. Но когда - пока неизвестно, потому что переносить необходимо целый комплекс по крайней мере из 17 генов. И если будет все удачно, заставить работать все эти гены (например, в геноме пшеницы), то, по оценкам специалистов, такие растения снизят урожайность на 20-30 процентов сухого веса из-за необходимости нести дополнительные энергозатраты на фиксацию азота...

Проблема производства и потребления генетически модифицированных растительных продуктов становится все более острой. Сторонники широкого употребления в пищу подобного рода изделий говорят, что они совершенно безопасны для человеческого организма, а преимущества их огромны - большие урожаи, повышенная устойчивость к переменам погоды и вредителям, лучшая сохранность. В то же время, в геноме растений есть дальние связи между генами, и вмешиваться в работу генной машины следует очень осторожно. Можно ненароком перевести генные механизмы растения из одного режима в другой, вовсе нежелательный для человека.

Хотя и в традиционной селекции масса таких примеров, не говоря уже о том, сколько селекционеров вообще ничего не получили. Известна, например, история с геном opaque 2. Этот ген захотели использовать в США (университет Пардью) для обогащения зерен кукурузы аминокислотой лизином, что резко бы повысило питательную ценность кукурузного зерна.

Перенос гена удался, радость была великая, но... урожайность у трансформированных сортов упала на 15 процентов, а сами зерна стали хрупкими и чувствительными к возбудителям болезней. Конечно же, очень жаль, что и вооруженная генно-инженерными методиками селекция не может одномоментно решить все проблемы, однако она гарантирует хотя и скромные, но прочные, непрерывные и эффективные успехи в сельском хозяйстве.

Выражение «зеленая революция» употребил впервые в 1968 г. Директор Агентства США по международному развитию В.Гауд, пытаясь охарактеризовать прорыв, достигнутый в производстве продовольствия на планете за счет широкого распространения новых высокопродуктивных и низкорослых сортов пшеницы и риса в странах Азии, страдавших от нехватки продовольствия. Она ознаменовала собой начало новой эры развития сельского хозяйства на планете, эры, в которую сельскохозяйственная наука смогла предложить ряд усовершенствованных технологий в соответствии со специфическими условиями, характерными для фермерских хозяйств в развивающихся странах. Это потребовало внесения больших доз минеральных удобрений и мелиорантов, использования полного набора пестицидов и средств механизации, в результате произошел экспоненциональный рост затрат исчерпаемых ресурсов на каждую дополнительную единицу урожая, в том числе пищевую калорию.

Идеолог Зеленой революции Норманн Борлауг, получивший за её результаты в 1970 г. Нобелевскую премию, предупреждал, что повышение урожайности традиционными методами может обеспечить продовольствием 6-7 млрд. человек. Демографический рост требует новых технологий в создании высокопродуктивных сортов растений, пород животных и штаммов микроорганизмов, которые позволят прокормить население численностью более 10 млрд. человек.

Работа, начатая Н.И. Вавиловым и Н.Борлаугом и его коллегами в Мексике в 1944 г., продемонстрировала исключительно высокую эффективность целенаправленной селекции по созданию высокоурожайных сортов сельскохозяйственных растений. Уже к концу 60-х годов широкое распространение новых сортов пшеницы и риса позволило многим странам мира (Мексике, Индии, Пакистану, Турции, Бангладеш, Филиппинам и др.) в 2-3 и более раз увеличить урожайность этих важнейших культур. Однако вскоре обнаружились и негативные стороны «зеленой революции». Вероятно, в связи с тем, что она была, в основном технологической, а не биологической.

Успехи селекции велики, её вклад в повышение урожайности важнейших сельскохозяйственных культур за последние 30 лет оценивается в 40-80%. В повышение эффективности сельского хозяйства важную роль играет гибридизация. Так, при перекрестном опылении кукурузы образуются более сильные и урожайные гибриды. В компании «Plant Genetic System» в Генте такие гибриды получены не только для кукурузы, но и для рапса. Китай полностью обеспечил свою продовольственную безопасность. Именно в Китае достигнуты большие успехи в селекции риса. Это, прежде всего, высокоурожайные гибриды Золотой водопад и др.) на основе традиционных местных сортов, дающие 12-18 т/га вместо обычных 2,5-3. Сейчас их выращивают на огромных площадях в Китае, Вьетнаме и других странах Юго-Восточной Азии.



Сложность путей создания сортов становится наглядной, если, например, учесть перечень требований к новому сорту пшеницы по классическому подсчету Н.И.Вавилова. В число признаков, которым должен соответствовать новый сорт входит 46 пунктов: высокий вес 1000 семян; крупный, при созревании не осыпающийся колос; не прорастающее на корню и в снопах зерно; прочная, неполегающая соломина; оптимальное соотношение массы зерна и соломины; иммунитет к вредителям, болезням; устойчивость к засухам; пригодность к механизированной уборке и т.д. Ныне количество требований выросло еще больше. Чем больше признаков селекционер стремится объединить в одном сорте или гибриде, тем ниже темпы искусственного отбора, тем больше времени требуется для создания нового сорта. Наличие отрицательных генетических и биоэнергетических по своей природе корреляций между признаками существенно снижает темпы создания новых сортов.

Повышение эффективности селекционного процесса предполагает контроль целого комплекса популяционно- генетических характеристик и, прежде всего, таких как засоление почв, вызванное плохо спроектированными ирригационными системами, а также загрязнение почв и водоемов, обусловленное в значительной мере избыточным использованием удобрений и химических средств защиты.

Перспективы решения проблемы голода с использованием традиционных подходов селекции не внушают надежд. К 2015 г. около 2 млрд человек будут жить в бедности. Растениеводы давно пытались решить эту проблему, издавна занимаясь выведением новых, высокопродуктивных сортов, традиционными путями при помощи скрещивания и отбора, т.е. естественными путями, главные недостатки которых – ненадежность и малая вероятность получения селекционером то, что он запланировал. Кроме того, часто жизни не хватает для создания нового сорта, т.е. слишком большие временные затраты.

Обычно для получения новых сортов и пород животных используют скрещивание и методы радиационного и химического мутагенеза. Среди проблем, ограничивающих возможности традиционной селекции, можно выделить следующие: приобретение одного желательного гена сопровождается часто потерей другого; некоторые гены остаются связанными друг с другом, что значительно затрудняет отделение положительных в

Главные достоинства методов генетической инженерии заключается в том, что они позволяют передавать один или несколько генов от одного организма другому без сложных скрещиваний, причем донор и реципиент не обязательно должны быть близко родственными. Это резко увеличивает разнообразие изменяемых свойств, ускоряет процесс получения организмов с заданными свойствами. Вооруженная генно- инженерными методами селекция не может одномоментно решить все проблемы, однако она гарантирует хотя и скромные, но прочные, непрерывные и эффективные успехи в сельском хозяйстве.

Замена генетически разнообразных местных сортов новыми высокоурожайными сортами и гибридами значительно усилила уязвимость агроценозов, то было неизбежным результатом обеднения видового состава и генетического разнообразия агроэкосистем. Массовому распространению вредных видов, как правило, способствовали и высокие дозы удобрений, орошение, загущение посевов, переход к монокультуре, минимальным и нулевым системам обработки почвы и т.д.

Современные сорта позволяют повысить среднюю урожайность за счет более эффективных способов выращивания растений и ухода за ними, за счет их большей устойчивости к насекомым- вредителям и основным болезням. Однако, они лишь тогда позволяют получить заметно больший урожай, когда им обеспечен надлежащий уход, строгое выполнение агротехнических приемов в соответствии с календарем и стадией развития растений (внесение удобрений, полив, контроль влажности почвы и борьба с насекомыми- вредителями). Усиливается зависимость продуктивности агроэкосистем от техногенных факторов, ускоряются процессы и возрастают масштабы загрязнения и разрушения окружающей среды. При внедрении новых сортов необходимы дополнительные меры по борьбе с сорняками, вредителями и болезнями.

Интенсивная технология приводит к деградации почв; ирригация, которая не учитывает особенности почвы, вызывает их эрозию; накопление пестицидов разрушает баланс и системы регуляций между видами – уничтожая полезные виды наряду с вредными, иногда стимулируя безудержное размножение вредного вида, который получил устойчивость к пестицидам; токсичные вещества, содержащиеся в пестицидах, переходят в продукты питания и ухудшают здоровье потребителей и т.д.

Многие специалисты считают, что в ХХ1 в. Предстоит вторая «зеленая революция», ДНК технологическая. Без этого не удастся обеспечить человеческое существование всем, кто приходит в этот мир.. Потребуются немалые усилия как традиционной селекции, так и современной сельскохозяйственной ДНК- технологии, для того, чтобы добиться генетического совершенствования продовольственных растений в темпе, который позволил бы к 2025 г. удовлетворить потребности 8,3 млрд. человек.

Биологические методы поддержания плодородия почв – органические удобрения, смена и оптимальное сочетание культур, переход от химической защиты растений к биологической, строго соответствующие местным особенностям почв и климата, способы обработки почв (например, безотвальная пахота) – необходимые условия сохранения и повышения плодородия почв и стабилизации производства продовольствия достаточно высокого качества и безопасного для здоровья людей.

Биотехнологии в растениеводстве. Все биотехнологические этапы производственных процессов peaлизуются с помощью живых организмов. В основе большинства классических методов биотехнологии используются ферментативные процессы и в большинстве случаев объектами исследований являются микроорганизмы. Однако, бесспорное значение имеют и другие живые организмы-растения и животные, улучшение которых осуществляется с применение традиционных методов генетики, селекции, физиологии, биохимии и др. Универсальный характер современной биотехнологии проявляется широком использовании методов клеточной и генной инженерии.

Человечество с надеждой ожидает создание таких клеточных кулытур, с помощью которых можно будет производить ценные лекарственные препараты, устранить ряд наследственных, раковых и других заболеваний способствовать очистке и улучшению экологического состояния окружающей среды. Особенно перспективным представляется возможность получения новых высокопродуктивных форм растений с улучшенными показателями качества продукции. Темпы развития биотехнологии в настоящее время можно сравнить с впечатляющим прогрессом компьютерной техники более 20 лет назад, а толчком к этому послужило рождение генетической и клеточной инженерии.

Улучшение культивируемых сортов и повышение их продуктивности. Исследовательская работа по селекции новых высокоурожайных сортов хлебных злаков, в первую очередь пшеницы, была начата после второй мировой войны. Новые сорта пшеницы были выведены в Мексике, риса -на Филиппинах. Выражение "зеленая революция" появилось в середа 60-х гг. после введения в культуру этих сортов и выдвигало целый компмлекс мер, направленных на увеличение сельскохозяйственного производительности. Достигнутые результаты по селекции новых высокоурожайных сорта можно записать в актив традиционных исследований по генетике и ycoвешенствованию растений. Использованная для их получения технолгия заключалась в переносе методом скрещивания целых "созвездий" хромосомных детерминант.

Чаще всего благоприятны) являются не все признаки особи. Например, у хлебных злаков, растет прямостоящими листьями (признак, выгодный при густом посеве) могут иметь более мелкие колосья, следовательно, они будут давать и меньше зерен. Чтобы добиться успеха в отборе линий, имеющих агрономически ценные признаки, селекционеру необходимо обладать терпением высоким мастерством.

Вторая зеленая революция, о которой начали говорить с середин 70-х годов, хотя она не произошла и до сих пор, станет результатом исследований, направленных на селекцию и культивирование новых растет: устойчивых к болезням, вредителям и засухе, и которые можно будет вырашивать без применения удобрений и пестицидов.

Умелое сочетание методов культивирования in vitro с классически методами селекции значительно ускорит селекционный процесс.

В числе приоритетных направлений использования растительных ресурсов находится и проблема введения в культуру новых видов и экотипов растений. И хотя процессы естественного и искусственного отбора взаимосвязаны, последний имеет целый ряд особенностей. Известно, например, что в естественной флоре показатель индекса урожая не играет ведущей роли при отборе. Между тем в естественных популяциях имеется генотипическая вариабельность по этому признаку, значение которого для культивируемых растений очевидно. Так, по данным Primack, при изучении популяций 15 однолетних и многолетних видов Plantago у однолетних видов были отмечены более высокие показатели «репродуктивного усилия» (число коробочек и семян, масса семян в расчете на единицу листовой поверхности) по сравнению с многолетними. Причем у весенних однолетних видов они оказались больше, чем у летних. Имеются основания полагать, что многие из отобранных человеком видов и экотипов обладали высокими показателями «репродуктивного усилия», а уровень генотипической вариабельности по этому признаку оказал решающее влияние на эффективность целенаправленного отбора.
В большинстве случаев крайне высокая экологическая пластичность видов растений сочетается с их весьма низкой продуктивностью. Так, у многих диких видов стратегия приспособления к неблагоприятным условиям внешней среды базируется на низкой скорости ростовых процессов. Неслучайно, отмечает Stuart, даже при избыточном потреблении питательных веществ дикими видами растений скорость их роста остается без изменений. Среди огромного разнообразия видов растений имеются и такие, на скорость роста которых те или иные факторы внешней среды почти не влияют. Примерами могут служить некоторые виды растительности тундры, скорость роста которых не зависит от температуры; Plantago coronopus лишь в незначительной степени реагирует на содержание элементов питания в почве; на скорость роста Carex limosa не влияет изменение концентрации К+ в 100-кратном диапазоне и др. Очевидно, что человек отдавал предпочтение тем видам растений, которые обладали положительной реакцией роста на оптимизацию условий внешней среды (пахоту, высокое плодородие почвы, орошение и т.д.). Ведущую роль при этом играли не только особенности онтогенетической адаптации диких видов, но и потенциал их генотипической изменчивости.
Отмеченный выше характер связи между высокой экологической пластичностью растений и их низкой продуктивностью заслуживает особого внимания. Не исключено, что именно эта особенность приспособительных возможностей растений послужила основанием для постановки вопроса: «адаптация или максимальный урожай?», правомерного, однако, лишь для онтогенетической адаптации, поскольку без реализации потенциала филогенетической адаптации, т.е. спектра генотипической изменчивости, рост урожайности растений немыслим. Более того, указанное противопоставление имеет смысл лишь относительно общей и широкой адаптации растений, тогда как специфическая и узкая адаптации являются непременным условием роста урожайности для большинства культивируемых видов растений.
Высокая степень генетической и морфофизиологической интеграции общей экологической устойчивости каждого вида растений в большинстве случаев сводит на нет попытки селекционеров за счет гибридизации (в т.ч. межвидовой) достичь экологической устойчивости сортов, свойственной другим видам. Не менее сложна и задача сочетания в одном сорте (и даже гибриде) высокой потенциальной продуктивности и экологической устойчивости. Сорта с высокой потенциальной продуктивностью и низкой экологической устойчивостью обеспечивают высокую урожайность только в благоприятных условиях среды, тогда как в стрессовых резко ее снижают. Поэтому в селекционной практике, особенно при использовании в качестве доноров диких видов, первостепенное значение имеют методы индуцированного рекомбиногенеза, снижения элиминирующего действия «селекционных сит» за счет гаметной и зиготной селекции, использование возможностей эколого-географической селекционной и сортоиспытательной сети. Важная роль при этом отводится методам создания гибридов F1, смешанных, синтетических и многолинейных сортов.
В целом, существуют весьма различные точки зрения относительно возможностей сочетания в одном генотипе высокой потенциальной продуктивности и экологической устойчивости. Так, по мнению Adamer, повышение ценности одних компонентов урожайности за счет селекции обычно снижает ценность других. И все же трудности селекционного сочетания потенциальной продуктивности и экологической устойчивости даже на межвидовом уровне не следует преувеличивать, а тем более абсолютизировать. Как известно, возможность решения этой задачи была продемонстрирована в работах И.В. Мичурина, Л. Бербанка, Н.В. Цицина и других исследователей. Данные о независимом расщеплении признаков, обусловливающих потенциальную продуктивность и экологическую устойчивость растений, известные еще с 1930-х гг., в настоящее время подкреплены достаточным числом данных об определенной физиолого-биохимической и генетической независимости основных компонентов потенциала онтогенетической адаптации растений. Многие признаки, характеризующие устойчивость растений к водному стрессу (мощная корневая система, восковой налет, пространственная ориентация листьев, их опушенность и т.д.), как правило, не находятся в отрицательных корреляциях с потенциальной и биологической продуктивностью или их компонентами. Более того, например, большая разветвленность корневой системы, глубина ее проникновения обеспечивают не только высокую (причем активную) устойчивость растений к засухе, но и возможность лучшего использования ими элементов минерального питания, определяя таким образом большую потенциальную и биологическую продуктивность культивируемого вида. Типичным примером в этом отношении является люцерна.
Тот факт, что потенциальная продуктивность и экологическая устойчивость контролируются разными комплексами генов, свидетельствует о реальной возможности сочетать их в одном сорте или гибриде. Coyne приводит сведения о компонентах урожайности фасоли (число бобов на растении, число семян в одном бобе и средняя масса семян), почти одинаково влияющих на общую урожайность семян и контролирующихся различными генетическими системами. Поэтому наиболее эффективным для этой культуры оказался не индивидуальный, а массовый отбор по показателю урожайности в более поздних расщепляющихся поколениях.
Сочетание высокой потенциальной продуктивности и экологической устойчивости в одном сорте или гибриде F1 требует использования не только особых методов селекции (межвидовой гибридизации, индуцирования рекомбинаций и т.д.), но и выбора специальных фонов для оценки продуктивной урожайности исходных форм и перспективных линий. Согласно Johnson и Frey, Vela-Cardenas и Frey, Allen et al., экологические и генетические варианты урожайности растений выше в благоприятных для их выращивания условиях внешней среды. Причем, если в оптимальной среде наследуемость урожайности и ее компонентов (и преимущество соответствующих отборов) высокая, то в неблагоприятных условиях она крайне низкая, а эффективность отбора резко уменьшается. Поэтому отбор на высокую продуктивную урожайность, обеспечиваемую в т.ч. и за счет большей экологической устойчивости, лучше проводить в благоприятной, чем стрессовой среде. В практическом плане это означает, что экологическую устойчивость сортов и гибридов в соответствующих стрессовых условиях целесообразно оценивать лишь после того, когда уже доказана их высокая потенциальная урожайность в благоприятных условиях среды.
Эффективным подходом в селекции, например, на устойчивость растений к засухе является комбинированное использование оптимальной и стрессовой по водообеспеченности среды. Такой подход основан на предположении, что потенциальная продуктивность и устойчивость к засухе контролируются различными генетическими системами и, следовательно, могут быть отобраны в процессе селекции независимо друг от друга. В этой связи автор считает целесообразным вести отбор на засухоустойчивость в соответствующей стрессовой среде, а селекцию на высокую потенциальную продуктивность - в условиях оптимальной водообеспеченности. Примером независимого наследования устойчивости к водному стрессу может служить кутикулярный слой, большая толщина которого обеспечивает лучшую засухоустойчивость растений и не связана отрицательной корреляцией с урожайностью или ее компонентами. Чередуя отбор в условиях водного стресса (для лучшего проявления того или иного признака устойчивости) и оптимальной водообеспеченности (для максимального проявления потенциальной урожайности или ее компонентов), можно сочетать высокую потенциальную продуктивность и устойчивость в одном сорте. Аналогичную возможность подтверждают и ранее приведенные нами сведения о том, что различия между видами и сортами по их способности к поглощению, накоплению и использованию элементов минерального питания, а также эдафической устойчивости детерминированы разными комплексами генов. Показаны, например, существенные различия между сортами томата, фасоли, кукурузы и других культур по эффективности использования N, Р и К, созданы высокоурожайные сорта пшеницы, сорго и риса, устойчивые к кислым и низкопродуктивным почвам.
Lu, Chiu, Tsai et al., Oka путем последовательного отбора на высокую продуктивность в потомстве гибридов сои, выращиваемых при разных сроках сева (дизруптивный сезонный отбор), получили эврипотентные сорта, т.е. способные обеспечить высокую урожайность в широком диапазоне изменений условий внешней среды. Тем самым были доказаны взаимосвязь приспособленности растений к сезонной и региональной вариабельности условий внешней среды и эффективность метода дизруптивного сезонного отбора в повышении общей адаптивности сортов сои. В связи с тем, что соя по сравнению с другими культурами более чувствительна к изменению длины дня и температуры, при выращивании разных сортов в различных экологических зонах и/или в разные годы необходимо учитывать значительное взаимодействие в системе «генотип - среда», маскирующее генотипическую вариабельность. В целях повышения экологической устойчивости пшеницы, Borlaug широко использовал возможности большей экологической дифференциации селектируемого материала за счет разных сроков посева и выращивания его на разной высоте над уровнем моря.
Finlay и Wilkinson обнаружили генотипы ячменя, обеспечивающие высокую устойчивость в широком диапазоне экологических сред, и интенсивные сорта риса, приспособленные к высоким дозам удобрений и загущению, сохраняющие устойчивость к варьирующим метеоусловиям на уровне местных сортов. Было показано, что некоторые высокоурожайные сорта, отобранные в оптимальных условиях внешней среды, сохраняли преимущество и в менее благоприятных экологических условиях, причем величина урожая в разных средах и его стабильность оказываются, в основном, независимыми друг от друга.
У перекрестноопыляющихся кормовых культур, в отличие от самоопыляющихся пшеницы и риса, Suzuki не удалось обнаружить сочетания в одном сорте высокой потенциальной продуктивности и устойчивости к экологическим стрессорам, а высокопродуктивные сорта кормовых культур, как правило, проявляли сильную реакцию на изменение условий внешней среды. Указанную особенность автор объясняет тем, что адаптивность перекрестноопыляющихся культур обусловлена не только приспособленностью отдельных растений (гомеостазом индивидуального развития), но и гетерогенностью генетического состава популяции (генетическим или популяционным гомеостазом). Причем генетический гомеостаз оказывает, по-видимому, более значимое влияние на онтогенетическую адаптацию, что и способствует лучшей приспособленности перекрестноопыляющихся растений к естественным средам, чем самоопыляющихся. В этом плане, на наш взгляд, особого внимания заслуживает возможность более эффективного использования генетического гомеостаза для повышения потенциальной продуктивности и экологической устойчивости у перекрестно- и самоопыляющихся культур путем создания смешанных видовых и сортовых посевов, а также синтетических и многолинейных сортов.
Особенно важную роль в повышении потенциальной продуктивности и экологической устойчивости культивируемых растений играют гибриды F,. Отмечены не только высокая их потенциальная продуктивность, но и большая устойчивость, а также более высокий экологический гомеостаз по сравнению с родительскими линиями. И хотя Griffing и Zsiros справедливо считают, что экологические стрессы обычно сводят к минимуму гетерозисные эффекты, нередки и случаи большей устойчивости гибридов F, к стрессовым факторам среды. Показано, например, что гомеостаз индивидуального развития гибридов кукурузы обусловлен их гетерозиготностью, а значительная часть гетерозисного эффекта гибридов кукурузы, пшеницы, ячменя, Phalaris tuberosa x P. arundinacea и других культур связана с их повышенной устойчивостью к температурному стрессу. Согласно предположению Langridge, последняя обусловлена большей стабильностью белков гибридов F,. Напомним, что в общем комплексе экологической устойчивости высших растений толерантность к экстремальным температурам является наиболее дефицитным свойством. Кроме устойчивости к температурному фактору, гибриды F1 отличаются более высокой общей адаптивностью. По данным Quinby, «сильные» гибриды сорго, приспособленные к условиям разных широт и различной высоте над уровнем моря, проявляют в то же время специфическую адаптацию, в т.ч. по срокам созревания.
Таким образом, в основе преимуществ гибридов F1 лежит положительный гетерозисный эффект не отдельных компонентов, а всей системы онтогенетической адаптации. В результате фенотипическая изменчивость у гетерозигот, как правило, менее выражена, чем у инбредных линий. Последние более подвержены изменениям под действием внешних условий, физиологически менее способны компенсировать влияние неблагоприятных факторов окружающей среды, тогда как гетерозиготы в указанной ситуации обладают более широким спектром защитно-компенсаторных реакций, большей морфогенетической пластичностью и более эффективным гомеостазом развития.
Заметим, что широкое использование гибридов F1 обусловлено не только явлением «истинного гетерозиса», но и возможностью быстрого комбинирования наиболее важных хозяйственно ценных признаков, включая и те из них, между которыми существуют отрицательные генотипические и экологические корреляции и сочетать которые при сортовой селекции обычно не удается. При этом важно совместить высокую потенциальную продуктивность и экологическую устойчивость. Кроме того, путем создания гибридов F1 можно преодолеть трудности, связанные с использованием ценных доминантных генов, сцепленных с неблагоприятными рецессивными генами (например, Тm-2 и nv у томата), и в более короткие сроки обеспечить сочетание ценных доминантных генов, в т.ч. контролирующих устойчивость к новым расам патогенов.
Важную роль в определении потенциальной продуктивности и экологической устойчивости играет гетерогенность посевов. Данные литературы по этому вопросу весьма противоречивы. Так, в опытах Schnell и Becker гетерогенность посевов кукурузы оказывала такое же влияние на устойчивость урожайности, как и гетерозиготность, хотя сочетание их обеспечивало лишь незначительное преимущество по сравнению с эффектом гетерозиготности. Однако, наряду с отмечаемым многими исследователями превосходством смеси генотипов, в т.ч. гетерозиготных, над гомогенными посевами, в ряде работ подобные преимущества не зафиксированы.
Учитывая практические трудности селекционного изменения идиотипа растений, показатели эволюционно обусловленной экологической устойчивости культивируемых видов должны рассматриваться в качестве основополагающего фактора при определении видовой структуры растениеводства в неблагоприятных почвенно-климатических зонах и приоритетов культур в селекционной работе. В этой связи особое внимание следует уделять повышению продуктивной урожайности таких видов растений, как сорго, просо, рапс, рожь и др., обладающих высокой конститутивной устойчивостью к недостатку влаги и/или тепла, в наибольшей степени лимитирующих величину и качество урожая во многих регионах нашей страны. Данный подход не только реальный, но и пока наиболее эффективный в решении задачи повышения устойчивости интенсивных агроценозов к погодным флуктуациям (засухам, суховеям, заморозкам, морозам, короткому вегетационному периоду и т.д.).
В повышении потенциальной продуктивности и экологической устойчивости сортов и агроценозов важную роль играет как общая, так и специфическая приспособленность, характеризующая их способность эффективно использовать благоприятные условия внешней среды и/ или противостоять действию абиотических и биотических стрессоров. Причем, как уже отмечалось, общая потенциальная продуктивность и экологическая устойчивость не могут быть сведены к сумме соответствующих специфических приспособленностей, а являются интегративными свойствами растения и агроценоза в целом. Кроме того, общая устойчивость может быть ослаблена или, наоборот, усилена за счет той или иной специфической устойчивости, а между разными типами последней могут существовать как положительные, так и отрицательные корреляции.
Подтверждением этим положениям могут служить данные Briggle и Vogel о высокоурожайных, широко адаптированных сортах карликовой пшеницы северо-западного побережья Тихого океана, которые оказались непригодными для выращивания в засушливых условиях Великих Равнин, а также сведения Quisenberry и Roark о сортах хлопчатника, эффективно использующих воду в оптимально влажной среде, но не проявляющих эту способность в условиях водного стресса. Отбирать линии на широкую адаптацию, т.е. приспособленность к широкому ряду экологических сред, считает Reitz, - это значит вести селекцию на посредственную и даже низкую урожайность. Согласно Matsuo, сорта с высокой потенциальной продуктивностью, обеспечивающие высокую урожайность в благоприятных условиях среды, сильнее реагируют на их изменения, резко снижая урожайность в неблагоприятных условиях. По данным Hurd, у сортов, отличающихся хорошо развитой корневой системой в благоприятных условиях среды, в условиях водного стресса мощность ее существенно уменьшается. Генотипы ячменя, характеризующиеся широкой адаптацией, обычно обеспечивают промежуточную урожайность, тогда как генотипы, адаптированные к специфической среде, характеризуются наиболее высоким значением продуктивности. В целом, наибольшая продуктивная урожайность сорта или гибрида F1 может быть достигнута при специфической приспособленности их к условиям произрастания. В случаях, когда отбор направлен на максимизацию одного конкретного признака и заканчивается после ряда поколений, популяции дается возможность достичь своего собственного генетического равновесия, интенсивно отбираемый признак очень часто теряет часть, и нередко большую, фенотипического успеха (улучшения), достигнутого за время предшествующего периода интенсивного отбора.
В процессе естественного и искусственного отборов, которые идут по всему фенотипу растения, а не по отдельным признакам, неизбежна сопряженная их изменчивость. Это положение в наибольшей степени и в первую очередь реализуется для таких обычно сложных и интегрированных по своей генетической и физиолого-биохимической природе компонентов урожайности, как потенциальная продуктивность и экологическая устойчивость. Именно поэтому проблема соотношения потенциальной продуктивности и экологической устойчивости сортов приобретает все большее теоретическое и практическое значение.

Последние материалы раздела:

Презентация на тему
Презентация на тему "«Алые паруса» А

Шепеленко Татьяна Анатольевна, учитель русского языка и литературы Персональный сайт: www.shepelenko.ucoz.ru Муниципальное казённое образовательное...

Егаис: инструкция по применению Как настроить егаис для розницы
Егаис: инструкция по применению Как настроить егаис для розницы

Подключение к ЕГАИС — требующий предварительной подготовки и материальных вливаний процесс. Кому и зачем подключаться к ЕГАИС и как это сделать,...

Городская ярмарка вакансий
Городская ярмарка вакансий

Образование и карьера Место проведения: Гостиный двор Адрес: Москва, ул. Ильинка, д. 4Школьникам и абитуриентам: "Выставка институтов" - День...